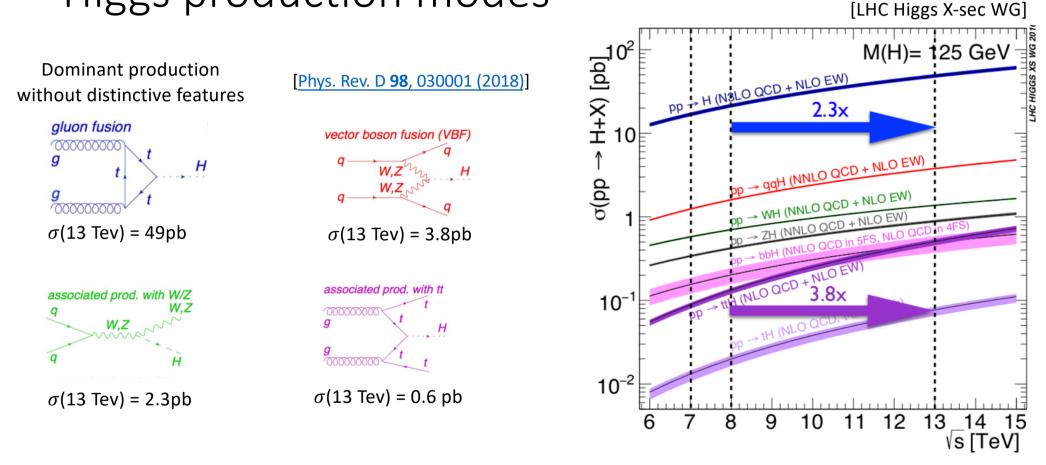


The LHC & the ATLAS experiment

Detector characteristics Width: 44m Muon Detectors Electromagnetic Calorimeters Diameter: 22m 7000t Weight: Solenoid Forward Calorimeters End Cap Toroid Inner Detector Barrel Toroid Shielding Hadronic Calorimeters

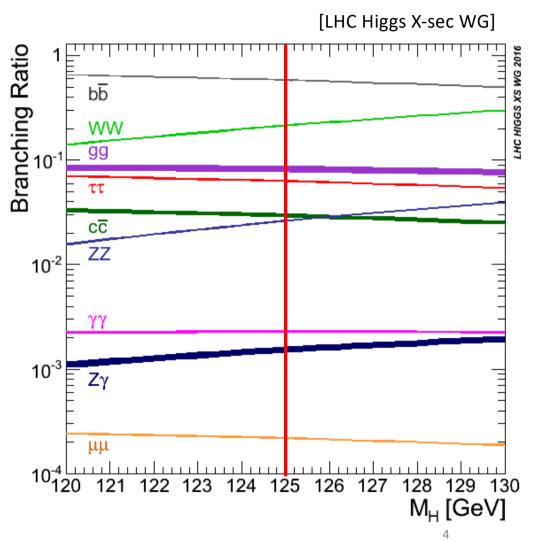

600 ⊢ Recorded Luminosity [pb⁻¹/0.1] ATLAS Online, 13 TeV Ldt=146.9 fb⁻¹ 500 2015: <µ> = 13.4 2016: <µ> = 25.1 2017: <µ> = 37.8 400 2018: <µ> = 36.1 Total: $<\mu>$ = 33.7 300 200 100 0^L 80 30 50 **60**₂ 70 10 20 40 Mean Number of Interactions per Crossing

Run2 collected almost 140fb⁻¹ good for physics at 13 TeV

Average number of pp interactions per crossing ~34

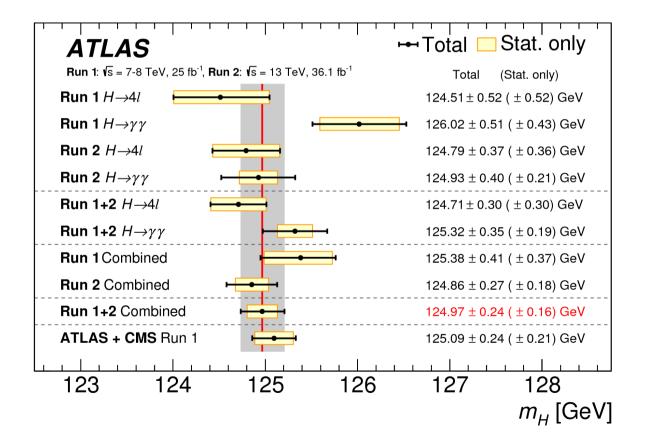
~8M Higgs produced

Higgs production modes

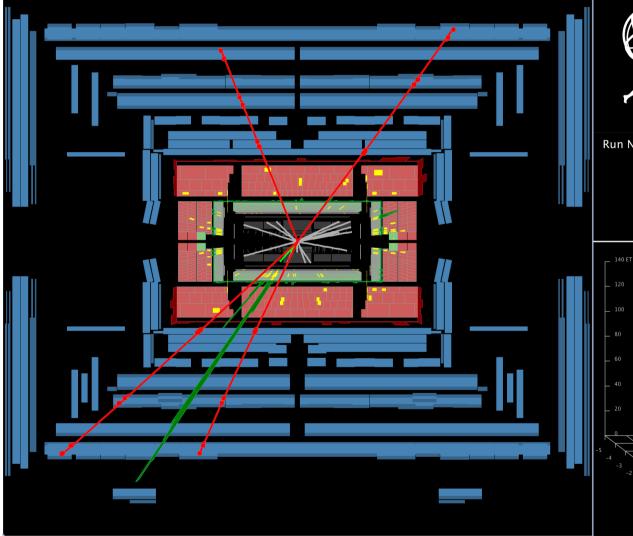


Non-inclusive channels have lower σ while providing additional signatures to reject background

Higgs decay channels


- $b\overline{b}$ dominant BR (58.4%)
- $\tau\tau$ complex final state BR (6.3%)
- WW* 2nd largest and clean BR (21.4%)
- ZZ* clean fully reconstructed BR (2.6%)
- $\gamma\gamma$ clean with high sensitivity BR (0.23%)
- $\mu\mu$ clean, very low BR (0.022%)

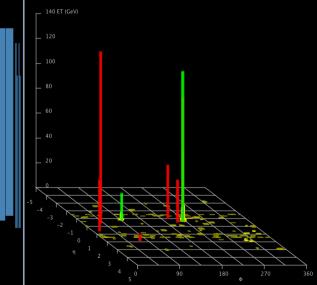
[Phys. Rev. D 98, 030001 (2018)]


Higgs Mass in $\gamma\gamma$ and ZZ* \rightarrow 4l final states

$m_{H} = 124.97 \pm 0.24 (\pm 0.16) \text{ GeV}$

Phys. Lett. B 784 (2018) 345

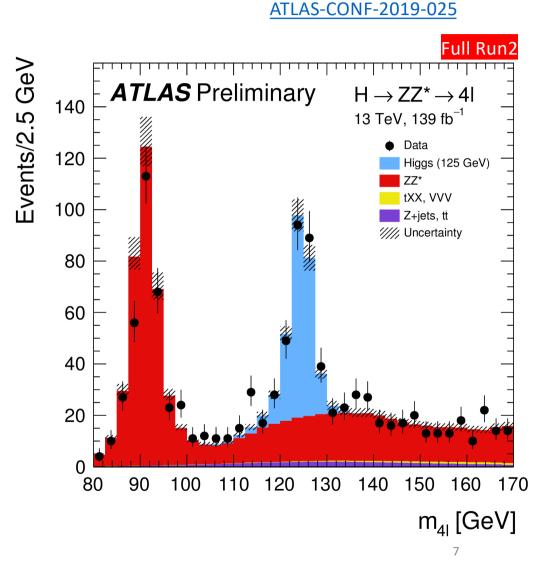
- For H->γγ systematic uncertainties are important (photon energy calibration)
- H->4l is still dominated by statistical uncertainties (36 fb⁻¹)
- The current combination (with 36 fb⁻¹) has comparable statistical and systematic uncertainties
- 0.2% precision



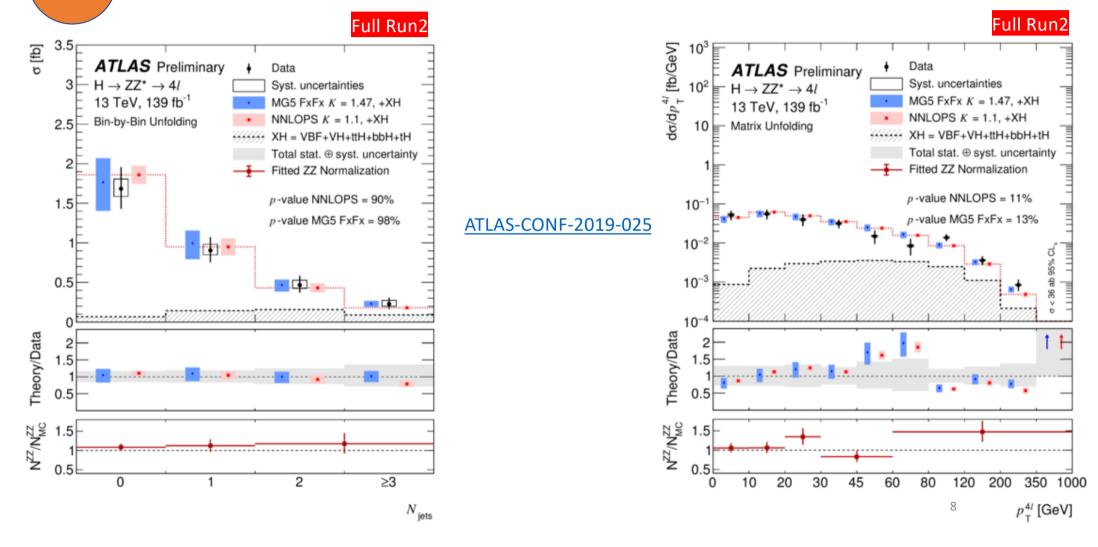
Higgs decays to Bosons

Run Number: 359058, Event Number: 2965933740

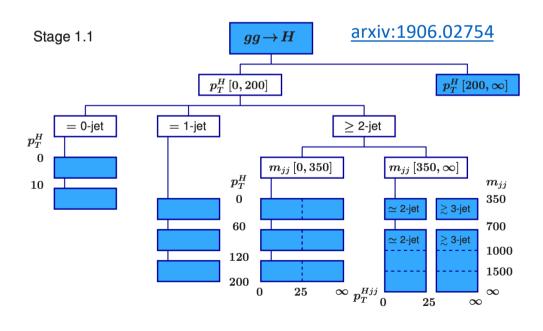
Date: 2018-08-25 02:51:44 CEST



Z(→ $\mu\mu$)+ H(→ $\mu\mu$ ee) candidate in 2018 data


Higgs to ZZ*

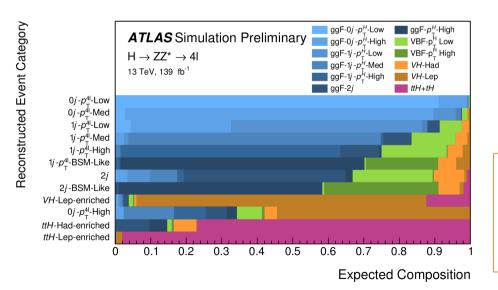
- Select two pairs of same-flavor opposite-sign leptons
- Require one pair to be compatible with the Z mass
- Main background ZZ*
- ZZ* background normalization is constrained from data new for this measurement
- Run2 sample of ~200 signal events
- Fiducial σ*BR (H→ZZ*→4I) measured is 3.35 ± 0.32 fb (cfr SM 3.41 ± 0.18 fb)

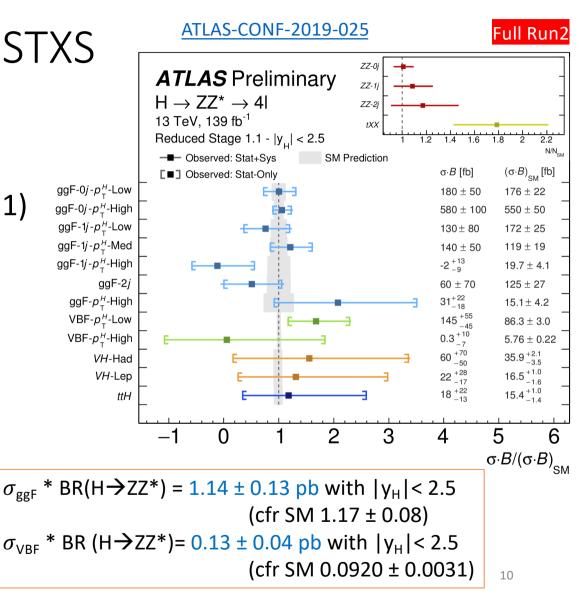

Higgs to ZZ* differential cross-sections

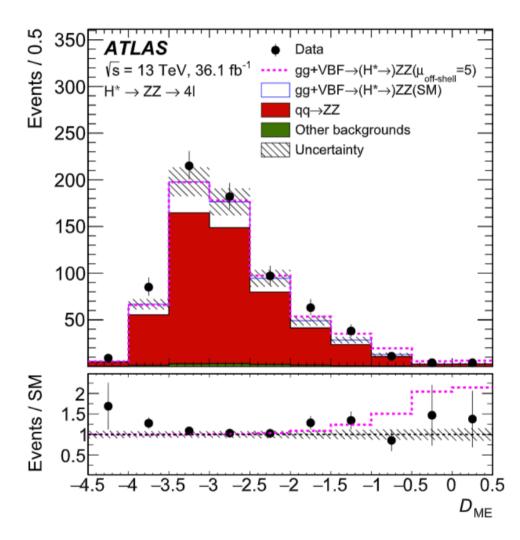
NEW

Simplified Template cross-section (STXS)

- Define regions within the phase space of each production process, and fit for the cross-section in each region
- Reduce model dependence and maximize sensitivity to BSM
- Increasing level of detail stage 0, stage 1, stage 1.1

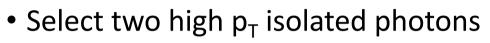



- In the following STXS results are shown for H→ZZ*→4l and for the combined analysis
- STXS results available for many more single channels


Higgs to ZZ* with STXS

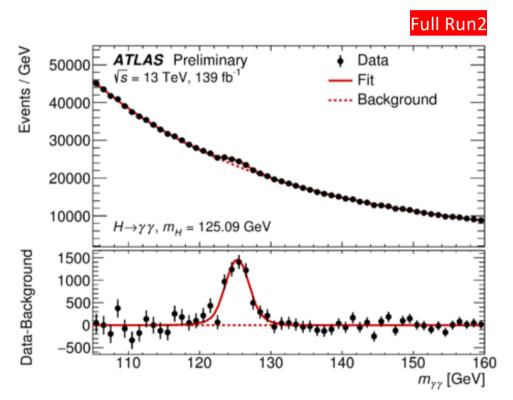
- Simplified Template cross-section (STXS) to probe various regions of the phase space (reduced stage 1.1)
 - 12 reconstruction categories
- Good agreement with SM

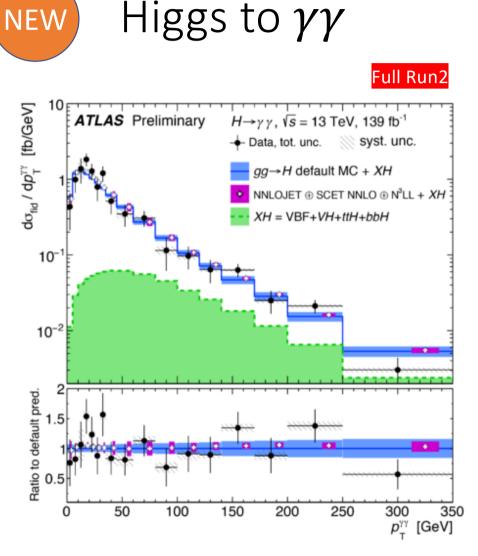
Off-shell Higgs boson production

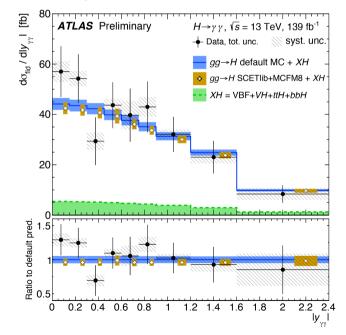

- Two final states $ZZ \rightarrow 4I$ and $ZZ \rightarrow 2I2\nu$
- - Inputs are masses and angles
- $ZZ \rightarrow 2I2\nu$ discriminant is the transverse mass
- The ratio of off/on shell signal strength is measured and interpreted as

 $\mu_{\text{off-shell}}/\mu_{\text{on-shell}} = \Gamma_H/\Gamma_H^{\text{SM}}$

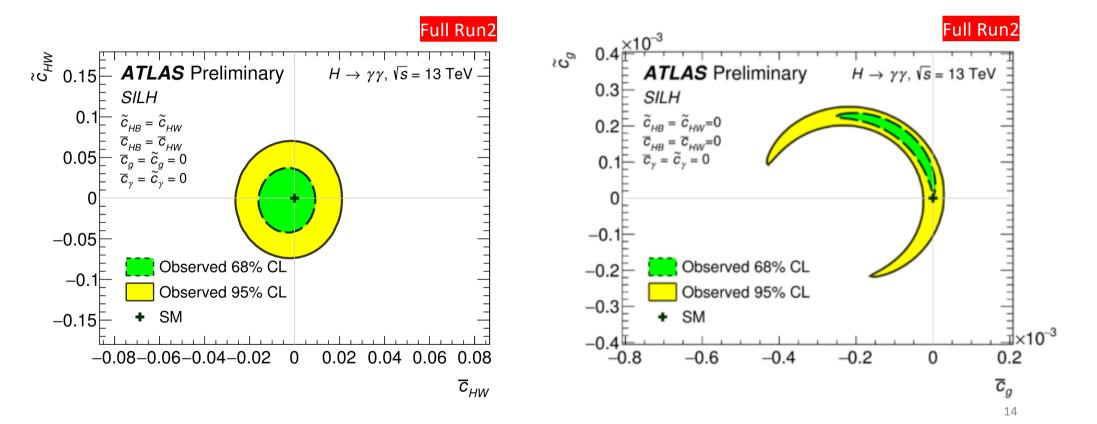
- Assumes off- and on-shell coupling modifiers are the same for both ggF and VBF production
- See <u>Phys. Lett. B 786 (2018) 223</u>
- $\Gamma_{\rm H} / \Gamma_{\rm H}^{\rm SM} < 3.5 (3.7 \text{ exp.})$
- $\Gamma_{\rm H}$ < 14.4 MeV (15.2 exp.) @ 95% CL

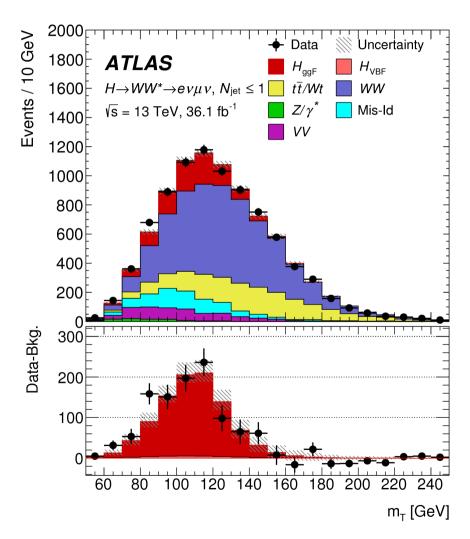

Higgs to $\gamma\gamma$


ATLAS-CONF-2019-029

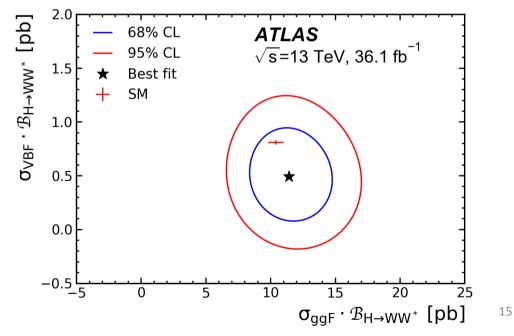

- Main back ground is irreducible $\gamma\gamma$
- Background parametrized with analytic function
 - Limit potential bias on the extracted signal
- Run2 sample of ~6500 signal events
- Fiducial σ * BR is measured: 65.2 ± 7.1 fb
 - cfr SM 63.6 ± 3.3 fb

NEW


- Measure p_T differential cross-section
 - Sensitive to charm quark Yukawa coupling via cc→H production and interference of c- and t-mediated contributions to the gg fusion loop
 - Limits on κ_c are set [-19, 24] at 95% CL

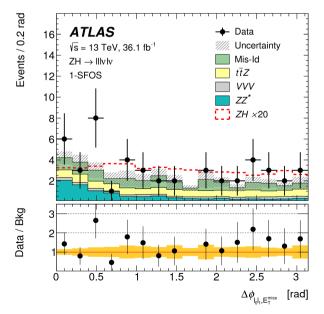

NEW Higgs to $\gamma\gamma$

ATLAS-CONF-2019-029


- Probe for new physics with differential cross section
 - Limits on dimension-6 operators Wilson coefficients describing couplings with W and gluons

Higgs to WW* $\rightarrow e\nu\mu\nu$

- Two different-flavor OS leptons selected
- Main backgr. are WW, top, diboson and $Z \rightarrow \tau \tau$
- $\sigma_{ggF}^*BR(H \rightarrow WW^*) = 11.4^{+2.2}_{-2.1}pb$
- $\sigma_{VBF}^*BR(H \rightarrow WW^*) = 0.5^{+0.29}_{-0.28}pb$

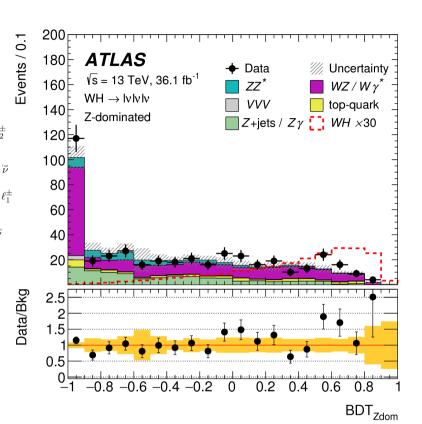


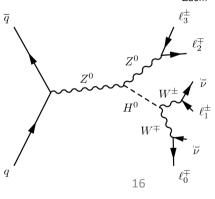
VH with $H \rightarrow WW^* \rightarrow |v|v$

arxiv:1903.10052

WH

- Events are selected with exactly 3 isolated leptons with p_T >15 GeV
- The total charge is required to be ± 1
- The main WH backgrounds are WZ/W γ * and top processes
- BDT discriminants are used to extract the signal

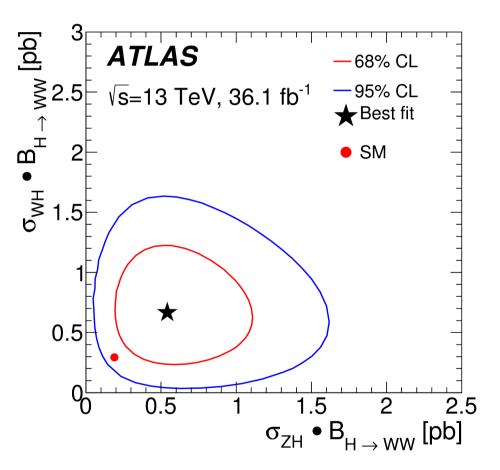

ZH

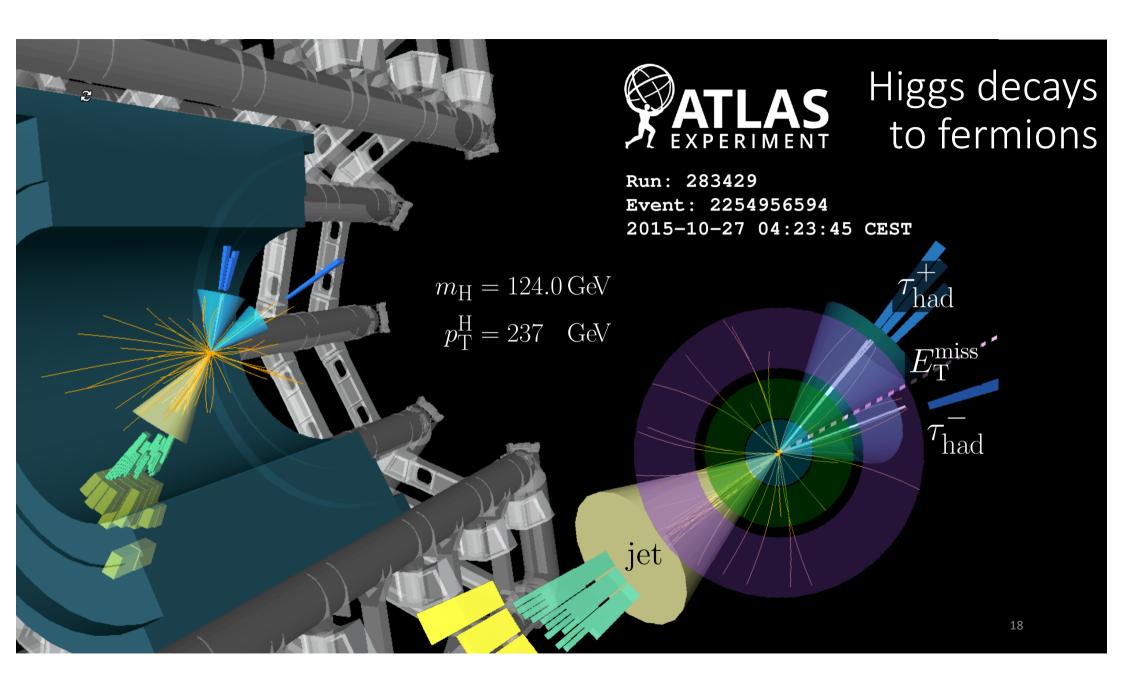

- Events are selected with 4 leptons $p_{_{T}}{>}10~\text{GeV}$ with a total charge of 0

 W^{\pm}

 W^{\ddagger}

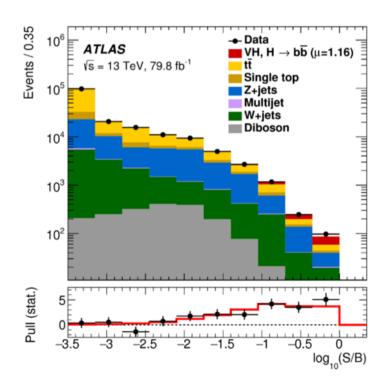
 Only events with 1 or 2 same flavor opposite sign (SFOS) leptons are kept

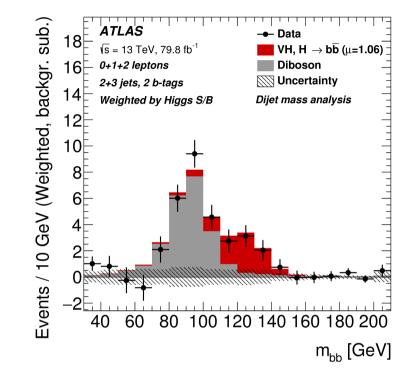




VH with
$$H \rightarrow WW^* \rightarrow |v|v$$

arxiv:1903.10052

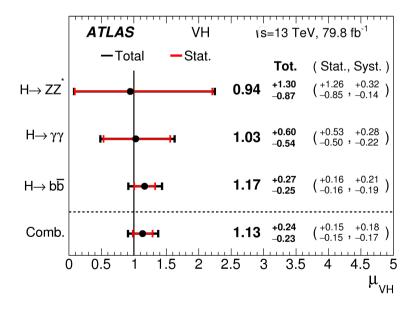

- σ (WH)*BR(H \rightarrow WW*) is measured to be 0.67^{+0.31}_{-0.27}(stat.)^{+0.18}_{-0.14}(syst.) pb
- σ (ZH)*BR(H \rightarrow WW*) is measured to be 0.54^{+0.31}_{-0.24}(stat.)^{+0.15}_{-0.07}(syst.) pb
- The WH and ZH combined significance is 4.1 σ (1.9 exp.)



VH with $H \rightarrow b \overline{b}$

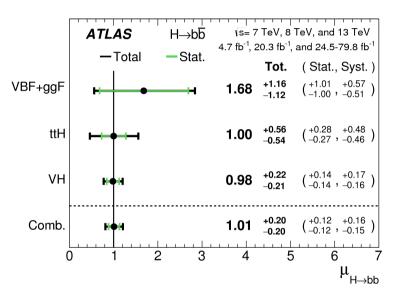
- $H \rightarrow b \overline{b}$ hidden by large $b \overline{b}$ background
- VH prod. improves S/B and provides best sensitivity
- Signal includes $ZH \rightarrow vvb\overline{b}$, $WH \rightarrow lvb\overline{b}$, $ZH \rightarrow IIb\overline{b}$ corresponding to 0, 1 and 2 charged leptons

Phys. Lett. B 786 (2018) 59


- Events selected with exactly 2 b-tagged jets that form the Higgs candidate, with one b-jet having $p_T>45$ GeV
- 8 event categories based on 2 or 3 jets, number of leptons and Higgs p_T
- BDT analysis is performed in each region

Combination with $H \rightarrow b \overline{b}$ and VH channels

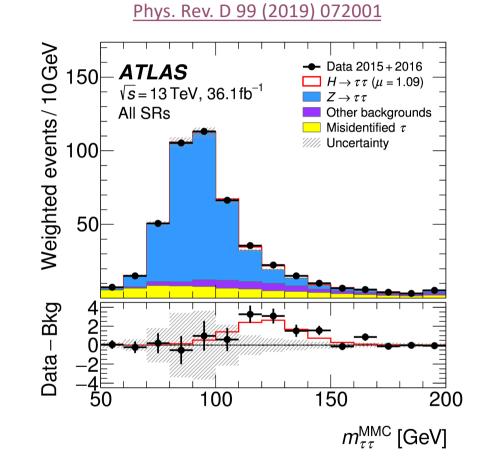
- The VH $(H \rightarrow b\overline{b})$ result is combined with the $b\overline{b}$ analysis of ttH and VBF+ggF production modes Run1 and Run2
- The measured combined signal strength relative to SM is


 $\mu_{H\to bb} = 1.01 \pm 0.20 = 1.01 \pm 0.12(\text{stat.})^{+0.16}_{-0.15}(\text{syst.}).$

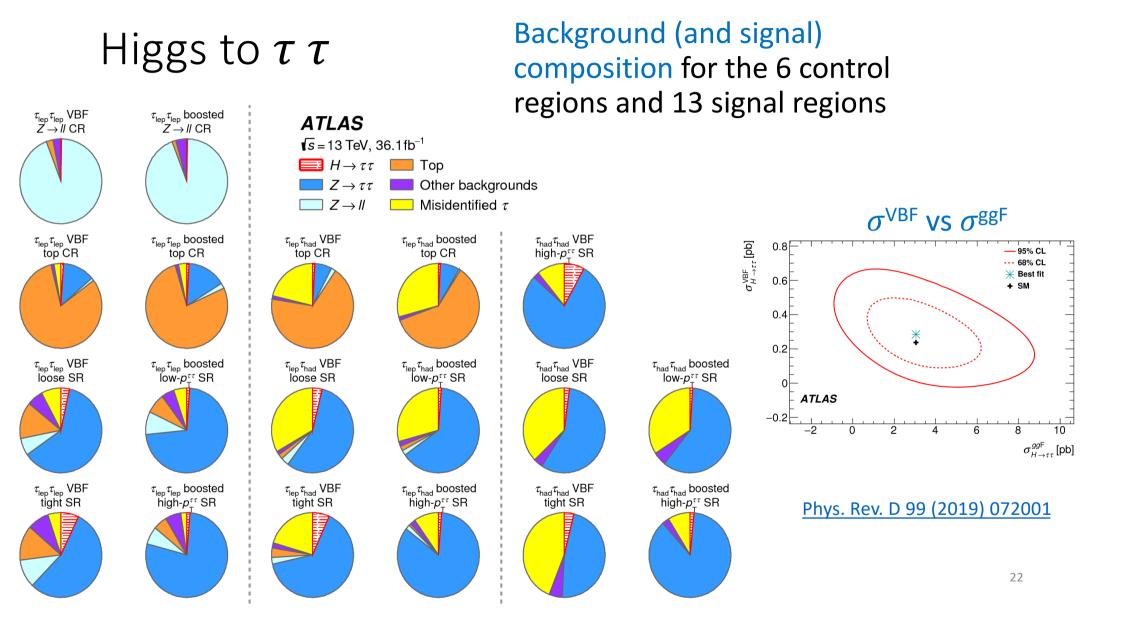
- The $H \rightarrow b\bar{b}$ combined significance is 5.4 σ (5.5 σ exp.).
 - VH (H $\rightarrow b\bar{b}$) alone has 4.9 σ significance (Run2 only)

Phys. Lett. B 786 (2018) 59

- The Run2 VH ($H \rightarrow b\overline{b}$) result is combined with VH in the decay channels $H \rightarrow ZZ^* \rightarrow 4I$ and $H \rightarrow \gamma\gamma$
- The VH comb. has a significance of 5.3 σ (4.8 σ exp.)
- The signal strength is 1.13 ± 0.15 (stat.) ± 0.18 (syst.)

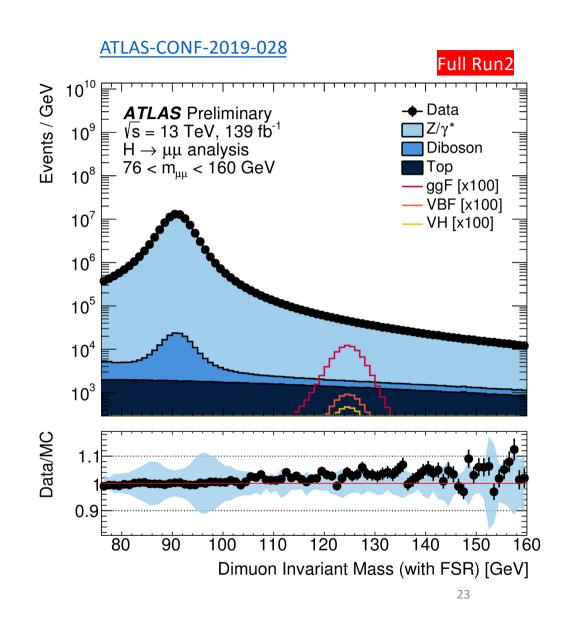


Higgs to au au

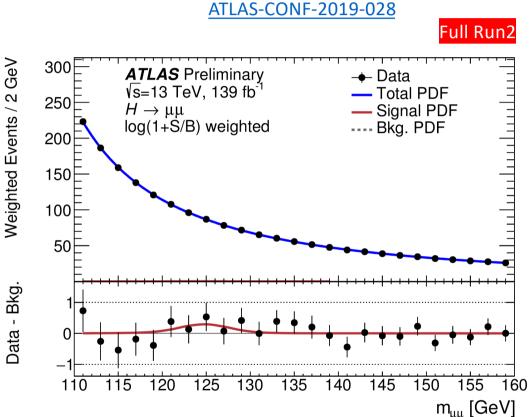

- Select all of pairs of $\tau \rightarrow e\nu\nu$, $\tau \rightarrow \mu\nu\nu$, $\tau \rightarrow \nu$ hadrons
- Main backgrounds $Z \rightarrow \tau \tau$, $Z \rightarrow II$, top, misidentified τ
- Dominant Z→ττ is normalized to data via Z→II validation regions
- Require a jet with $p_T > 40$ GeV to suppress $Z \rightarrow \tau \tau$
 - Jet p_T >70 GeV for $\tau_{had} \tau_{had}$ channel
- Two categories to improve S/B and disentangle the production modes
 - VBF : Jet2 p_T >30GeV, $|\Delta \eta_{jj}|$ >3, m_{jj} >400GeV
 - **Boosted** : not VBF and $p_T^{\tau\tau} > 100 \text{ GeV}$
- The total σ * BR(H $\rightarrow \tau\tau$) is measured to be

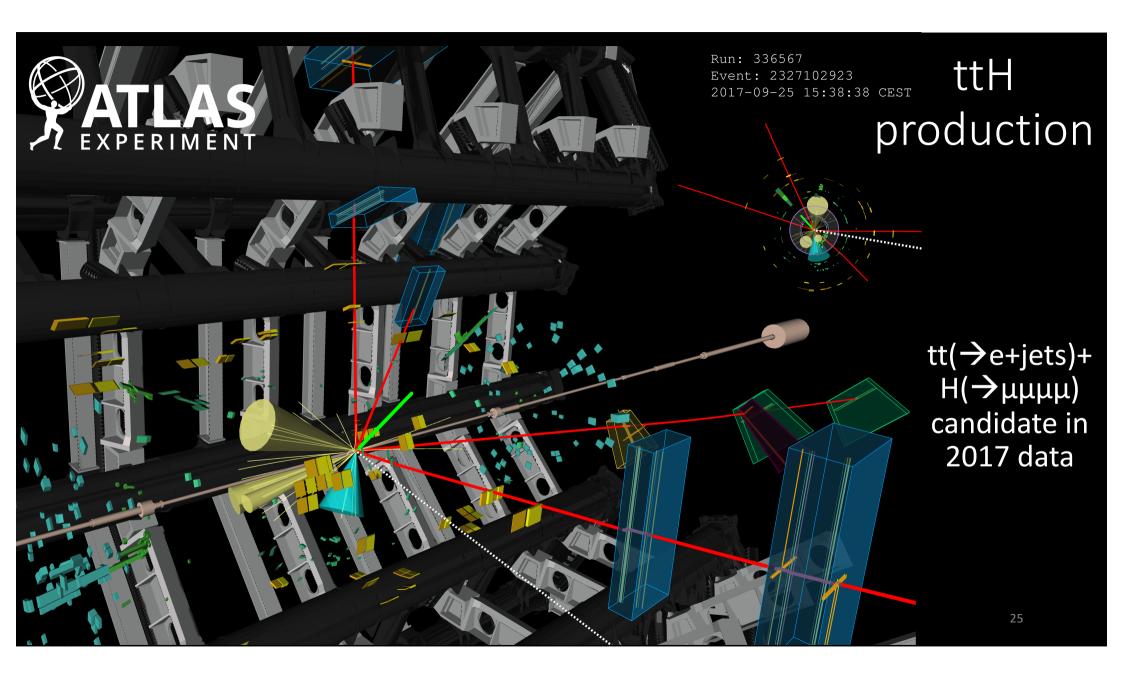
 $3.77^{+0.60}_{-0.59}$ (stat.) $^{+0.87}_{-0.74}$ (syst.)pb

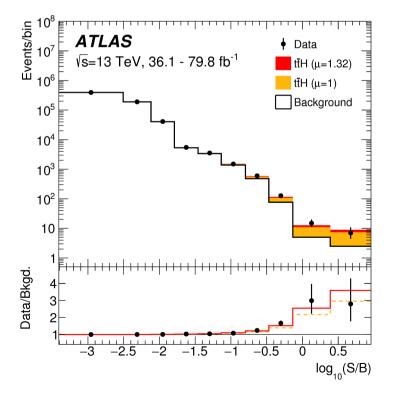
• In combination with run 1 data, $H \rightarrow \tau \tau$ has been observed with a significance of 6.4 σ (5.4 exp)

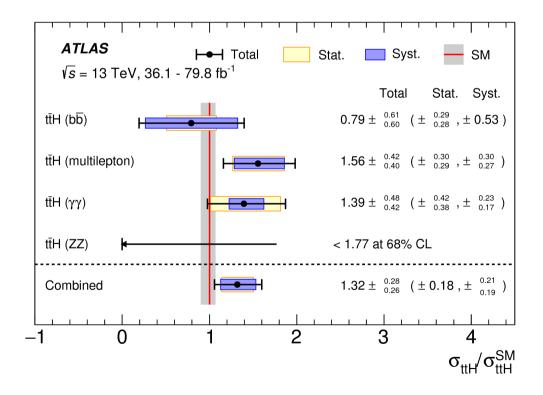


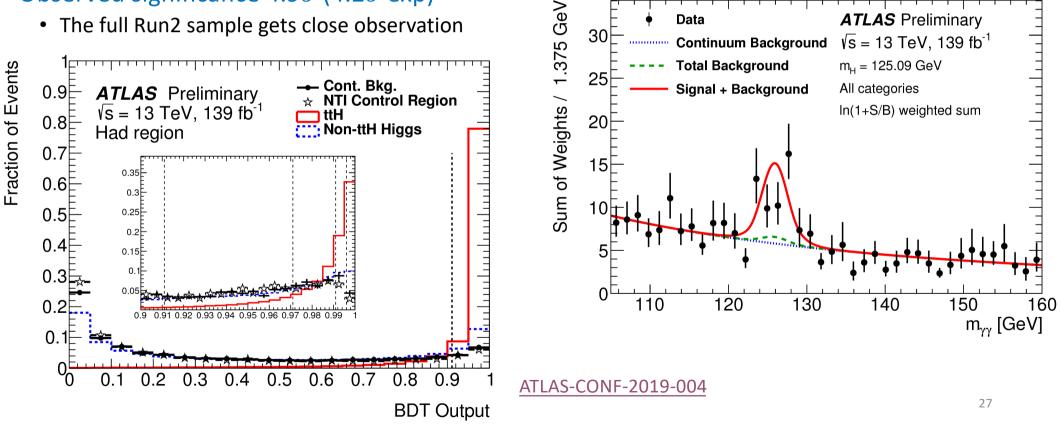
21




- With its low BR (0.022%), the Higgs $\rightarrow \mu\mu$ signal hasn't been observed yet
- Select two opposite sign isolated muons
- Main backgrounds Z/γ^* , top, diboson
- Inclusive selection has a challenging S/B = 0.2%
- Background is modeled with an analytical function to avoid bias

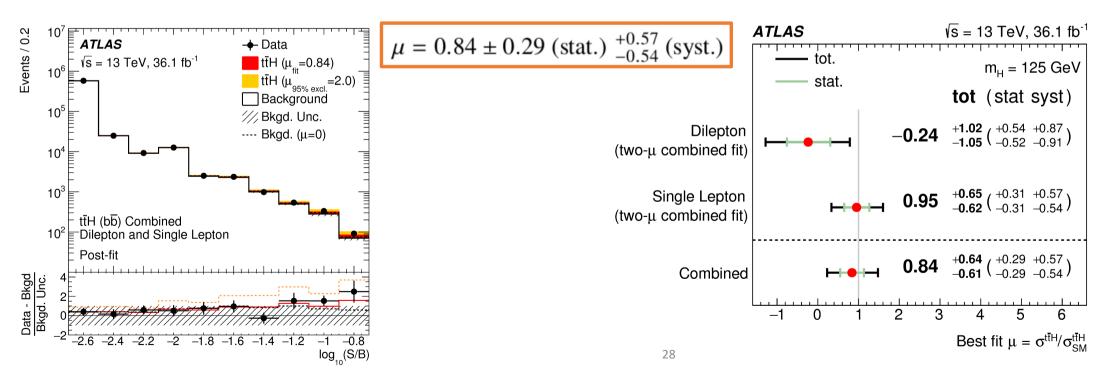

- Improve sensitivity with BDT
- BDT trained with background from side bands and simulated signal
- BDT inputs
 - Dimuon system variables
 - Jet(s) p_T and η (for events with 1 or 2+ jets)
 - Angles among jet(s) and dimuon system (for events with 1 or 2+ jets)
- Set limits on $\sigma^*BR(H \rightarrow \mu\mu) / SM < 1.74$ (1.33 exp)




Observation of ttH production

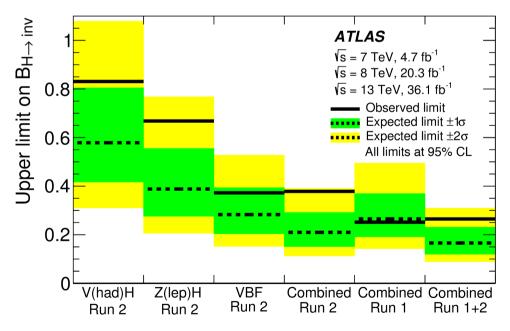
- Combination of ttH searches in $\gamma\gamma$, ZZ* \rightarrow 4l, multilepton, and $b\overline{b}$ (data at 7, 8 and 13 TeV)
- ttH production observed with a significance of 6.3 σ (5.1 exp.)
- At 13 TeV σ_{ttH} is measured to be 670 ± 90 (*stat.*) $^{+110}_{-100}$ (*syst.*)fb (cfr SM 507 $^{+35}_{-50}$ fb)

- Low cross-section * BR($H \rightarrow \gamma \gamma$) low background
- Event selection based on BDT in 7 event categories
- Signal extracted fitting the $\gamma\gamma$ invariant mass
- Observed significance 4.9 σ (4.2 σ exp)



ttH production ($H \rightarrow \gamma \gamma$)

Full Run2


ttH production ($H \rightarrow b \overline{b}$)

- Select events with 1 or 2 e or μ and with at least 3 jets of which 2 are b-tagged
- Main background is ttbar + jets
- BDT are used to classify and reconstruct the events
- Signal strength (μ) values above 2 are excluded at 95% CL

Invisible decays

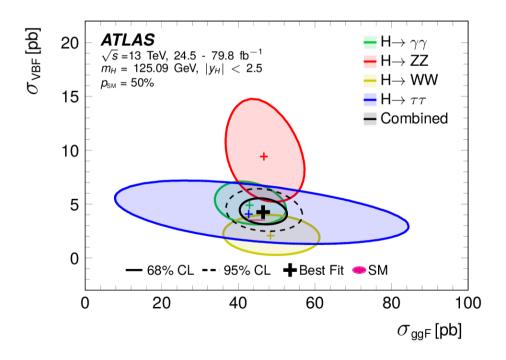
- Dark matter particles, if sufficiently light, may be produced in decays of the Higgs boson
- Combining searches in VBF, $Z(\rightarrow II)H$, and $V(\rightarrow jj)H$ production modes
- BR(H \rightarrow invisible) < 0.26 (0.17^{+0.07}_{-0.05} exp.) at 95% CL

Analysis	\sqrt{s}	Int. luminosity	Observed	Expected	$p_{\rm SM}$ -value	Reference
Run 2 VBF	$13 { m TeV}$	$36.1 \ {\rm fb}^{-1}$	0.37	$0.28^{+0.11}_{-0.08}$	0.19	[36]
Run 2 $Z({\rm lep})H$	$13 { m ~TeV}$	$36.1 \ {\rm fb}^{-1}$	0.67	$0.39\substack{+0.17\\-0.11}$	0.06	[37]
Run 2 $V(had)H$	$13 { m TeV}$	$36.1 \ {\rm fb}^{-1}$	0.83	$0.58\substack{+0.23 \\ -0.16}$	0.12	[38]
Run 2 Comb.	$13 { m ~TeV}$	$36.1 \ {\rm fb}^{-1}$	0.38	$0.21\substack{+0.08\\-0.06}$	0.03	this Letter
Run 1 Comb.	$7,8~{ m TeV}$	4.7, 20.3 fb ⁻¹	0.25	$0.27\substack{+0.10 \\ -0.08}$		[35]
Run $1+2$ Comb.	$7,8,13~{\rm TeV}$	$4.7, 20.3, 36.1~{\rm fb}^{-1}$	0.26	$0.17\substack{+0.07 \\ -0.05}$	0.10	this Letter

Phys. Rev. Lett. 122 (2019) 231801

. .

Combined Higgs cross-section

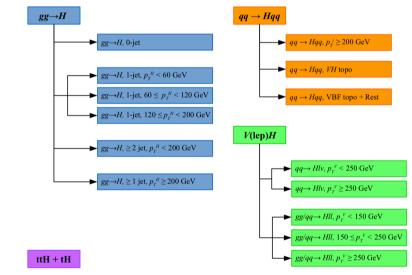

arXiv:<u>1909.02845</u>

30

$p_{\rm SM} = 71$	5.09 GeV, ∣ <i>y</i> %	_H < 2.5					
					Total	Stat.	Syst.
ggF	γγ 🖷			0.96	± 0.14	(±0.11	+0.09
	ZZ* (÷		1.04	+ 0.16 - 0.15	,	, ±0.06
	<i>WW*</i> •	÷		1.08	± 0.19	(±0.11	, ±0.15
	ττ 🛏	ŧ⇒-		0.96	+ 0.59 - 0.52	(+0.37 -0.36	+0.46
	comb.	ē		1.04	± 0.09	(±0.07	+ 0.07
VBF	γγ			1.39	+ 0.40 - 0.35	(+0.31 -0.30	+ 0.26
	ZZ*	⊢		2.68	+ 0.98 - 0.83	(+0.94 -0.81	+0.27
	WW* +===	4		0.59	+ 0.36	(+0.29 -0.27	, ±0.21
	ττ 🛏			1.16	+ 0.58	(+0.42 -0.40	+ 0.40
	bb			3.01	+ 1.67 - 1.61	(+ 1.63 - 1.57	+ 0.39
	comb.			1.21	+ 0.24 - 0.22	(+0.18 -0.17	+0.16
	γγ 🛏	•••••		1.09	+ 0.58 - 0.54	(+0.53 -0.49	+ 0.25
	ZZ* 🗕			0.68	+ 1.20	(+ 1.18 - 0.77	+0.18
VH	bb			1.19	+ 0.27 - 0.25	(+0.18 -0.17	+ 0.20
	comb.			1.15	+ 0.24 - 0.22	(±0.16	+0.17
tīH+tH	γγ 🗧			1.10	+ 0.41 - 0.35	(+0.36 -0.33	+0.19
	VV*			1.50	+ 0.59	(+0.43 -0.42	+ 0.41
	ττ 🛏			1.38	+ 1.13 - 0.96	(+0.84 -0.76	+ 0.75
	bb 🛏	<u> </u>		0.79	+ 0.60 - 0.59	(±0.29	, ± 0.52
	comb.	1		1.21	+ 0.26 - 0.24	(±0.17	+0.20
-2	0	2	4		6		8

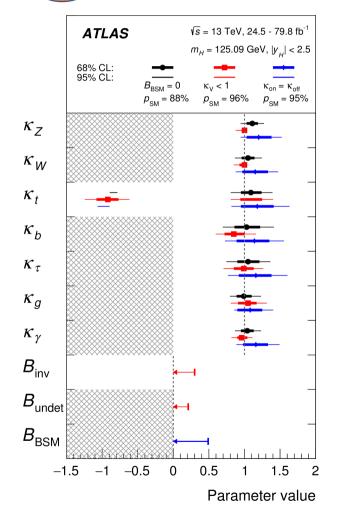
- Combination of results up to 80 fb⁻¹
- Combined signal strength is determined to be

 $\mu = 1.11^{+0.09}_{-0.08}$



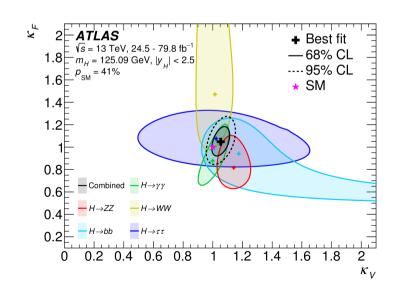
Combined Higgs cross-section

arXiv:1909.02845


ATLAS		[Total	Stat.	Syst.
√ <i>s</i> = 13 TeV, 36.1 - 79.8 fb ⁻¹		$B_{\gamma\gamma}/B_{ZZ}$. 💌	0.86	+0.14 -0.12 (+0.12 -0.11'	+0.07 -0.06
$m_H = 125.09 \text{ GeV}, y_H < 2.5$		$B_{b\overline{b}}/B_{ZZ}$	· 💻	0.00	+0.35 -0.28 (+0.22 -0.18'	-0.06 ⁾ +0.27 -0.22 ⁾
11		B _{WW*} /B	77*	0.86	+0.18	+0.13	+0.12
p _{SM} = 89%		B ₁₁ /B ₇₇			+0.29	+0.22	+0.19
	Stat.	22				-0.19'	-0.14
Syst.	SM	-0.5 0	0.5 1	1.5 2	2.5	3 3	.5 4
					Total	Stat.	Syst.
	0-jet			1.29	+0.18 -0.17	(^{+0.16} _0.15 [,]	+0.09 -0.08)
	1-jet, $p_{\tau}^{H} < 60 \text{ GeV}$			0.57	+0.43	, +0.37	+0.23
	1-jet, $60 \le p_{\tau}^{H} < 120$				-0.41 +0.38	(-0.35, , +0.33	-0.22 ⁾ +0.18
gg→H × B _{77*}	· · ·		F	0.87		(-0.31,	-0.15)
	1-jet, 120 $\leq p_T^H < 20$	00 GeV	•••	1.30	+0.81 -0.72	(^{+0.71} 0.65,	+0.39 -0.30)
	≥ 2-jet, <i>p</i> ^{<i>H</i>} ₇ < 200 G	eV 🖡	-	1.11	+0.56	(+0.46	+0.32
	≥ 1-jet, <i>p</i> ^{<i>H</i>} ₇ ≥ 200 G				-0.51 +0.84	-0.44 [,] , +0.73	-0.26 [/] +0.43
	$ \ge 1$ -jet, $p_T^2 \ge 200$ G	ev		2.05		(_0.64,	-0.32)
					+0.45	.0.26	+0.27、
	VBF topo + Rest			1.57		(^{+0.36} 0.32,	-0.21)
qq→Hqq × B _{zz*}	VH topo)	-0.12	+1.35	(+1.31 (-1.11 [,]	+0.32 -0.24)
	p ⁱ _τ ≥ 200 GeV _			-0.95	+1.51	, +1.34	+0.69
	$p_{\tau} \ge 200 \text{ GeV}$			-0.95	-1.48	(-1.29'	-0.72)
qq→Hlv × B _{ZZ} ,	p_{τ}^{V} < 250 GeV				+1.24	, +1.02	+0.71、
	'			2.28	-1.01	(0.85'	-0.55)
	$p_T^V \ge 250 \text{ GeV}$	H		1.91	+2.32 -1.19	(^{+1.44} 1.00,	+1.81 -0.66)
gg/qq→HII × B _{zz} .	$p_{\tau}^{V} < 150 \text{ GeV}$	H=		0.85	+1.26	(^{+1.01} _0.98	+0.76 -1.22)
	$\frac{1}{150} < n^{V} < 250$ Ge			0.00	+1.29	, +1.02	+0.79
		· •		0.86		(-0.90,	-0.70)
	$p_T^V \ge 250 \text{ GeV}$			H 2.92	+3.03 –1.50	(+1.87 (-1.33,	+2.38 -0.71)
_					+0.30	+0.30	+0.24、
$(t\bar{t}H + tH) \times B_{ZZ^*}$				1.44	-0.33	(^{+0.30} 0.27,	-0.19)
-10	-5	0	5 Paramet	or norn		0 d to SN	1 Violue
			Faramer	er nom	alize	10 31	n value

• Cross section and branching ratios with simplified template (STXS)

 Good overall agreement with SM in a range of kinematic regions of Higgs boson production processes

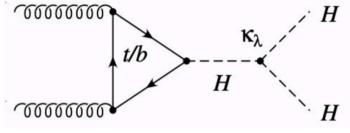

Higgs couplings from combination

NEW

• The 3 fits for the couplings assume

- $B_{BSM} = 0$: no undetected decays and SM invisible BR
- $\kappa_V < 1$: Off-shell production doesn't depend on Γ_H^{TOT}
 - Includes H→invisible searches
- Same on-shell and off-shell couplings
 - Includes off-shell analysis
- B_{BSM} < 47% at 95% CL

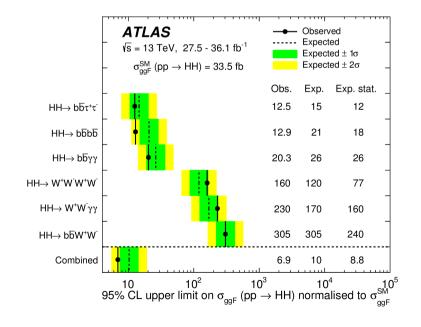
arXiv:1909.02845

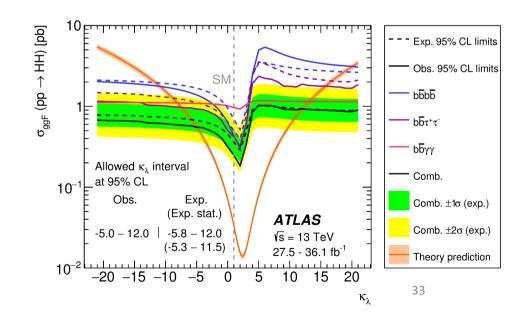

Assuming universal coupling scale factors

$$\kappa_V = \kappa_W = \kappa_Z$$

$$\kappa_F = \kappa_t = \kappa_b = \kappa_\tau = \kappa_\mu$$

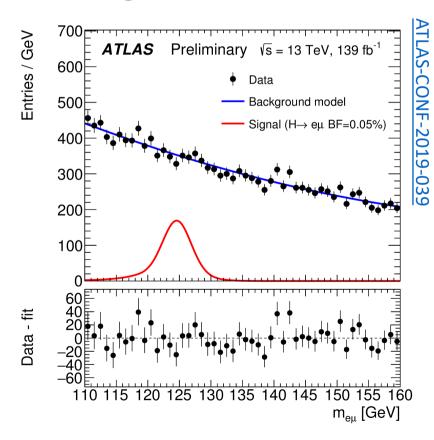
32

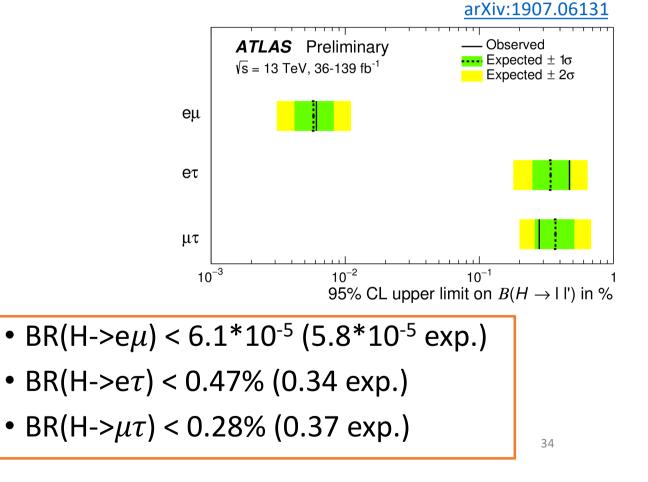

Search for Higgs pair production


- The Higgs self coupling as a further EWSB probe
- Six analyses are combined

- Limits are set on $\sigma_{\rm HH}$ / $\sigma_{\rm HH}^{\rm SM}$ < 6.9 (10 exp.) at 95% CL
- Limits on Higgs self coupling modifier κ_{λ} are set -5.0 < κ_{λ} < 12.0 at 95% CL

arXiv:1906.02025




Search for LFV in Higgs decays

• Lepton flavor violation searched in the $e\mu$, $e\tau$, and $\mu\tau$ decays

ullet

No significant excess observed

Summary

- Run2 provides an order of magnitude more candidate than Run1
 - More differential measurements performed
- Together with improved analysis techniques more precise Higgs measurements in an ample range of production modes and signatures
- Direct observation achieved for all main production and decay modes
 - Observation of Higgs interactions with all three third-generation fermions
- Precision probing of the SM Higgs sector on going

