QFTHEP'2019: The XXIV International Workshop High Energy Physics and Quantum Field Theory

Higgs physics at CMS

Milos Dordevic

Vinca Institute of Nuclear Sciences, University of Belgrade

on behalf of the CMS Collaboration

22 Sep – 29 Sep 2019, Sochi, Russia

Overview of Higgs boson measurements at CMS

- Higgs boson discovered 7 years ago (ATLAS & CMS)
- The mass of the Higgs boson measured @~125 GeV
- Precise measurement of its properties are pursued:
 - spin-parity, width, boson and fermion couplings
- All measurements consistent with Standard Model

 Novel decay modes, anomalous coupling studies, differ. x-sec

M. Dordevic (Vinca, University of Belgrade) 23 Sep 2019, QFTHEP'2019

Standard Model Higgs production and decays

- Significant increase in production rate due to higher center-of-mass energy from LHC Run-1 to Run-2!
- Giacinto Piacquadio ICHEP 2018

The LHC data taking at 7, 8 and 13 TeV

CMS Integrated Luminosity, pp, $\sqrt{s} = 7$, 8, 13 TeV

ggF and VBF Higgs to diphoton at 13 TeV

- Data collected in 2016 and 2017
- The simplified template cross section (STXS) stage framework minimize the theory dependence of the Higgs boson measurement
- ggF (VBF) with 11(5) Stage 1 bins

- Extensive usage of Boosted Decision Trees (BDTs):
 photon BDT, vertex ID BDT, vertex probability BDT,
 di-photon BDT and di-jet BDT (for categorizations)
- Signal plus background fit to all analysis categories, each weighted by ratio of number of S/S+B events

ggF and VBF Higgs to diphoton at 13 TeV

CMS PAS HIG-18-029

 $\sigma_{qqH} / \sigma_{qqH}^{SM} = 0.8^{+0.4}_{-0.3}$

- Measured cross sections normalized to the corresponding SM prediction:
 - $\sigma_{ggH} / \sigma_{ggH}^{SM} = 1.15^{+0.15}_{-0.15}$
- The results of a seven and thirteen-parameter fit in the STXS framework:

Higgs boson mass from H->ZZ->4l at 13 TeV

- The measurements of the Higgs boson properties (ZZ->4I) with the 2016 data
- Differential and fiducial cross sections, Higgs width from on-shell production
- Matrix element discriminants (D^{kin}_{bkg})

Three-dimensional fit:

 $3D \mathcal{L}(m'_{4\ell}, \mathcal{D}'_{mass}, \mathcal{D}^{kin}_{bkg})$

H mass measurement:

 $m_{
m H} = 125.26 \pm 0.21 \, {
m GeV}$ ±0.20 (syst.)±0.08 (stat.)

Higgs boson width from H->ZZ->4l at 13 TeV

Higgs boson couplings from H->ZZ->4l at 13 TeV

- The full LHC Run 2 dataset is utilized
- Inclusive & differential cross-section
- STSX framework approach followed
- MVA (BDT) and MEM discriminants exploiting full decay/production info
- Sig. strength modifiers and 2D L scan

M. Dordevic (Vinca, University of Belgrade)

23 Sep 2019, QFTHEP'2019

CONS. The second second

H->ZZ->4l at 13 TeV: Fiducial and differential CS

CMS Preliminarv 137.1 fb⁻¹ (13 TeV) CMS Preliminary 137.1 fb⁻¹ (13 TeV) dơ_{fid} /dp_T(H) (fb/GeV) 4.5E dσ_{fid} /d|y(H)| (fb) **4**E Systematic uncertainty Systematic uncertainty gg→H (NNLOPS) + XH gg→H (NNLOPS) + XH 3.5 gg→H (POWHEG) + XH gg→H (POWHEG) + XH 10-3È XH = VBF + VH + ttH (POWHEG) XH = VBF + VH + ttH (POWHEG) (LHC HXSWG YR4, m =125.09 GeV) (LHC HXSWG YR4, m_=125.09 GeV) 2.5È 10⁻² 1.510⁻³ 0.5 Ratio to NNLOPS Ratio to NNLOPS 1.4 0.8 0.6 0.4 0.2 0 200 150 ٥ 50 100 2.5 0 0.5 1.5 2 $p_{_{T}}(H) (GeV)$ |y(H)| **CMS** Preliminary **CMS** Preliminarv 137.1 fb⁻¹ (13 TeV) 137.1 fb⁻¹ (13 TeV) $\sigma_{\text{fid}}\left(\text{fb}\right)$ 10 F dơ_{fid} /dp_T(jet) (fb/GeV) 10² Systematic uncertainty Systematic uncertainty gg→H (NNLOPS + Pythia) + XH gg→H (NNLOPS) + XH 10 gg→H (POWHEG + Pythia) + XH gg→H (POWHEG) + XH s(p_(jet) > 200 GeV XH = VBF + VH + ttH (POWHEG + Pythia) XH = VBF + VH + ttH (POWHEG) 10^{-1} (LHC HXSWG YR4, m =125.09 GeV) (LHC HXSWG YR4, m = 125.09 GeV) $p_{\tau}(jet) > 30 \text{ GeV}, |\eta(jet)| < 2.5$ p_(jet) > 30 GeV, |n(jet)| < 2.5 10⁻² 10- 10^{-3} 10^{-2} 10.8 Ratio to NNLOPS Ratio to NNLOPS 1.2 0.8 0.6 0.4 0.2 0.4 0 2 ≥4 0 50 100 150 200 p_(jet) (GeV) N(jets)

M. Dordevic (Vinca, University of Belgrade)

23 Sep 2019, QFTHEP'2019

CMS PAS HIG-19-001

PLB 792 (2019) 369

• Combination of H-> $\gamma\gamma$ and H->ZZ->4I: 61.1 ± 6.0 (stat) ± 3.7 (syst) pb SM value of 55.6 ± 2.5 pb

Observation of ttH production at 13 TeV

Evidence for ttH->multilepton production at 13 TeV

- Analysis of 2017 data, also combined with 2016
- H->WW, ZZ ,ττ decay modes (multilepton states)
- MVA(BDT) & matrix element (MEM) discriminant
- 2D BDT approach, recursive k-means partitioning

CMS Preliminary 41.5 fb⁻¹ (13 TeV) Events 100 2lss ^庄^庄 μ(ttH)=μ̂ Observed Uncertainty Non-prompt Charge mis-m 🚺 Conv. Rares EWK ttW + ttWW ttZ 80 60 40 20 Data/pred 1.4 1.2 0.6 2 10 BDT

CMS PAS HIG-18-019

- An excess of events seen in highest bins
- Observed (expected) significance 3.2(4.0)σ

M. Dordevic (Vinca, University of Belgrade)

- Analyses improved and extended with 2017 data
- ttH(bb): MVA (BDTs) and matrix element (MEMs)
- Observed(expected) significance of 3.9(3.5)σ

Observation of Higgs decay to bottom quarks

- Test Yukawa coupling to down type quark
- V(W/Z)H most sensitive production process
- Final states with 0, 1 or 2 leptons & 2 b-jets
- Backgrounds: V+jets, ttbar, single top, QCD

- Deep neural network discriminant for b-tagging
 - m(jj) resolution is improved by DNN regression
 - Combined with other VH(bb): 4.8(4.9)σ obs(exp) and H(bb) in ggF, VBF and ttH: 5.6(5.5)σ obs(exp)

Higgs boson production and decay to ττ at 13 TeV

- 2nd largest BR among the fermionic Higgs decays
- x-sec measurement split by prod. & decay mode
- New NN classification algo used for categorization
- Four different $\tau\tau$ final states -> eµ, e τ_h , $\mu\tau_h$ and $\tau_h\tau_h$

CMS PAS HIG-18-032

77.4 fb⁻¹ (13 TeV)

DeepCSV b-tagging, hadron-plus-strips for τ

CMS Preliminary

- The simplified template cross section (STSX)
- Backgrounds: F_{F} and τ embedding methods
- Observed (expected) significance: $4.7(6.6)\sigma$

Higgs boson production and decay to ττ at 13 TeV

Higgs boson decaying to charm quarks

- BR(H->cc) ~20 smaller than H->bb, large QCD bckg
- V(W/Z)H production, V+jet and ttbar backgrounds
- Two topologies: "resolved jet" and "merged-jet", targeting the lower and the higher Higgs boson p_T
- Two jet collections: with radius R = 0.4 and R = 1.5

- DeepCSV c-quark tagger
- Jet substructure: Cambridge-Aachen algo, PUPPI, using modified mass drop tagger "soft drop" (SD)
- 3 channels: "OL" (vvcc), "1L" (lvcc) and "2L" (llcc)
- Resolved: 95% of VH with p_T<200 GeV, high bckg
- Merged: 5% of VH, boosted, but low background

CMS PAS HIG-18-031

• Signal extracted using binned likelihood fit in 2 categories, then combined

M. Dordevic (Vinca, University of Belgrade)

23 Sep 2019, QFTHEP'2019

VBH Higgs to invisible decays at 13 TeV

- **Invisible Higgs decay** only via ZZ->4v in SM
- Sensitive to the BSM: Higgs as portal to DM
- VBF Higgs: large m_{ii} & $|\Delta\eta_{jj}|$ and small $|\Delta\phi_{jj}|^{\text{strink}}$
- Main backgr.: V + jets

- Distinctive VBF kin. features: fitting the m_{ii} shape
- Additionally, cut-and-count analysis is performed
- Slight excess (4 10%), inconsistent with the VBF

VBH Higgs to invisible decays at 13 TeV

Phys. Lett. B 793 (2019) 520

Expected and observed 95% CL upper limits on $(\sigma/\sigma_{SM}) x$ BR(H -> inv) for the SM - like Higgs boson as f-ion of (m_{H})

Shape analysis (left) and cut and a count approach (right)

Phys. Lett. B 793 (2019) 520

• Interpretation in the context of Higgs - portal models of DM interaction

• Most stringent limits for m_{y} smaller than 18(7) GeV (fermion(scalar) DM cand.)

Higgs boson decaying to two muons at 13 TeV

- Small expected BR of 2.17 x 10⁻⁴ for H-> $\mu\mu$
- Primary production mechanisms: VBF, ggH
- BDT to suppress backgrounds: DY, st, ttbar
- Iterative procedure to optimize categories

Transformed BDT

PRL 122 (2019) 021801

- The total of 15 event categories utilized
- Max. likelihood S+B fit to di-muon mass

PRL 122 (2019) 021801

• 2016 data: obs.(exp.) 3.0(2.5)σ -> combined with 7 and 8 TeV: 2.9(2.2)σ

• Observed upper limit on the Higgs boson BR to muon pair ---> 6.4×10^{-4}

Higgs boson pair production at 13 TeV

Higgs self-coupling: independent SM test,

- Higgs trilinear couplings by measuring HH
- Heavy BSM resonances can decay to a HH

- Non-resonant Higgs boson pair production
- EFT: five couplings -> $y_{t_{,,}} \lambda_{HHH}$, c_2 , c_{2g} and c_g , with $k_{\lambda} = \lambda_{HHH} / \lambda_{SM}$ and $k_t = y_t / y_{SM}$ defined
- Resonant: either a CP-even spin-0 (radion) or spin-2 (graviton), width << detector res.
 - bbγγ, bbττ, bbbb & bbVV analyses (V=W/Z)

PRL 122 (2019) 121803

PRL 122 (2019) 121803

• Non-resonant obs.(exp.) limits at 95% CL -> 22.2(12.8) x SM

• Resonant production: upper exclusion limits at 95% CL in 250 to 3000 GeV

arXiv:1902.00134

- Extrapolation studies for Higgs coupling combination at 3000 fb⁻¹ (HL-LHC)
- Up to 200 pp collisions per bunch crossing -> extensive detector upgrades

Summary and Outlook

- Higgs boson observation in 2012 major event in high-energy physics
- Characterization of the Higgs properties to explore the EWSB in SM
- Mass, spin-parity, width measurements from high precision decays
- Higgs observation in $\gamma\gamma$, ZZ, WW, bb, $\tau\tau$ and tt+H production modes
 - Yukawa couplings to fermions confirmed at an O(20%) precision
- Inclusive and differential CS and new approaches (STXS etc.) applied
- Rare processes being studied: H->μμ, H->cc, Higgs self-couplings etc.
- HL-LHC: improving measurement precision of Higgs boson couplings

BACKUP

Charged Higgs to top and bottom at 13 TeV

Search for 2HDM neutral H->ZA->IIbb at 13 TeV

400

Exp. excl.

Obs. excl.

±1 std. dev.

± 2 std. dev.

800

Exp. excl.

Obs. excl.

±1 std. dev.

± 2 std.dev.

0.50 0.75 1.00

 $\cos(\beta - \alpha)$

600

1000

m_A (GeV)

M. Dordevic (Vinca, University of Belgrade) 23 Sep 2019, QFTHEP'2019

Event category

CMS PAS HIG-18-029

400

CMS Simulation Preliminary $H \rightarrow \gamma \gamma$

13 TeV (2017)

VRE RSM					2			2	37	2	2	5	3	1	39		7		1100	
VBF rest	1	2	3	2	_	8	16	18	8	1	2	2	1	26			7			~
VBF 3J-like Tag1	1	3	5	2		3	7	4	3	6	21	13	16	8	1		6			Ľ
VBF 3J-like Tag0		1	2	1		1	1	3	7	5	15	26	26	7	2		3			
VBF 2J-like Tag1	2	3	4	1		2	4	2	1	18	5	40	4	13			2		٥n	0
VBF 2J-like Tag0		1	3	1		1	1	1	1	13	3	58	7	9	1		1		00	Ξ
2J BSM Tag1					3			2	56			1	1	2	5	1	30			S
2J BSM Tag0					4			1	62				1	2	5	1	24			Q
2J high Tag1				7			1	56	1	1	3	1	1	5	1	1	22			d
2J high Tag0				7				59	2		2	1	1	5	1	1	20		160	3
2J med Tag1	1		16			1	54	1			2	1	1	6		1	16			0
2J med Tag0			14				59	2			2	1	1	5		1	15			S
2J low Tag1	15	19				39	1			1	2	1	1	6		1	14			Ы
2J low Tag0	16	19				41	1			1	2	1	1	5			13		40	
1J BSM				1	48				18			2	1	2	14		12		40	<u> </u>
1J high Tag1			2	49				17		2	2	5	2	10			9			. <u>⊖</u> ́
1J high Tag0				51	1			15		1	2	6	2	10	1		9			0)
1J med Tag1	2	2	65				12			1	1	2	1	8			6			\sim
1J med Tag0	1	1	63	1			14			1	1	3	1	8			6		00	5
1J low lag1	27	54	2			5				1	1	1		5			5	_	120	ŏ
1J low Lag0	27	55	1			6				1		1		5			5			Ð
0J Lag2	83	8	2			1								2			3			at
	78	10	4			1	1					1		2			3			
0J Tag0	73	11	5			1	1					1		3			4		<u>۱</u>	\mathbf{O}
	S	Ž	þe	db	Σ	Š	be	db	Σ	S	ЗЗ	é	é	st	Σ	é	er		0	
	I	2	Ĕ	ΪĹ	S	2	Ĕ	ĨĹ	ŝ	Ð	Ð			Ð	S S S	:= _	Ę			
	g	7	ſ			S	2	2		₹	₩	57	3	Ш	LL.	Η	0			
	0,	Т	Ŧ	- -	<u> </u>	Т			Ň	ட்	ட்	11	11	H ا	B					
		gg	-В	Ъ	Τ	gg	Ъ	g	ΤĹ	Щ.	Щ.	B	B		>	Б				
		0,	D	D	ő	0,	D	D	ő			>	>			>				
										gF	gF				_					
										D	D		S	LX3	S DI	OC	ess			

Higgs boson mass from H->ZZ->4l at 13 TeV

JHEP 11 (2017) 047

Higgs boson couplings from H->ZZ->4l at 13 TeV

CMS PAS HIG-19-001

Total Higgs boson Cross Section measurement

PLB 792 (2019) 369

Observation of ttH production at 13 TeV

M. Dordevic (Vinca, University of Belgrade) 23 Sep 2019, QFTHEP'2019

Observation of Higgs decay to bottom quarks

PRL 121 (2018) 121801

Higgs boson production and decay to ττ at 13 TeV

CMS PAS HIG-18-032

CMS PAS HIG-18-031

