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Introduction

The report considers the interaction of scalar particles, photons and
fermions with the gravitational and electromagnetic Schwarzschild,
Reissner-Nordstrom, Kerr and Kerr-Newman fields. The behavior of
effective potentials in the relativistic Schrodinger-type second-order
equations is analyzed. It was found that the quantum theory is
Incompatible with the hypothesis of the existence of classical black
holes with event horizons of zero thickness that were predicted based
on solutions of the general relativity with zero and non-zero
cosmological constant A

The alternative may be presented by compound systems, i.e.,
collapsars with fermions in stationary bound states.



Introduction

The following papers are the base of report
1. Stationary solutions of second-order equations for point fermions in the
Schwarzschild gravitational field // V.P.Neznamov and |.l.Safronov, J. Exp. Theor.
Phys. (2018) 127: 647.

2. Stationary solutions of second-order equations for fermions in Reissner—Nordstrom
space-time // V.P.Neznamoy, I|.l.Safronov, and V.E.Shemarulin, J. Exp. Theor. Phys.
(2018) 127: 684.

3. Stationary solutions of the second-order equation for fermions in Kerr—Newman
space-time // V.P.Neznamoy, I|.l.Safronov, and V.E.Shemarulin, J. Exp. Theor. Phys.
(2019) 128.64.

4. Second-order equations for fermions on Schwarzschild, Reissner-Nordstréom, Kerr
and Kerr-Newman space-times // V.P.Neznamov, Theor. Math. Phys. (2018) 197
1823.

5. Quantum mechanical equivalence of the metric of a centrally symmetric
gravitational field // M.V.Gorbatenko and V.P.Neznamov, Theor. Math. Phys. (2019)
198:425.

6. Stationary solutions of the second-order equation for fermions
in the external Coulomb field // V.P.Neznamov and Il.l.Safronov, J. Exp. Theor. Phys.
(2019) 155: 792.
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Introduction

The following papers are ready for publication

1. Quantum mechanics of particle stationary states in external singular spherically
and axially symmetric gravitational fields // M.V.Gorbatenko and V.P.Neznamov .

2. Quantum mechanics of particle stationary states in external singular spherically
and axially symmetric gravitational fields with non-zero cosmological constant //
M.V.Gorbatenko and V.P.Neznamov .

3. Quantum mechanics of stationary states of particles interacting with non-extreme
rotating charged black holes in minimal five-dimensional gauged supergravity //
M.V.Gorbatenko and V.P.Neznamov .



Introduction

We also used the results of separation of variables:

1. in Klein-Gordon equation

» for Kerr-Newman metric - V.B.Bezerra, H.S.Viera and André A.Costa, Class. Quantum Grav.
31, 045003 (2014);

» for Kerr-Newman-(A)dS metric - G.V.Kraniotis, Class. Quantum Grav. 33, 225011 (2016);

» for five-dimensional geometry of Kerr-Newman-AdS - S.Q.Wu, Phys. Rev. D 80 (2009)
084009, arxiv:0906.2049v4 [hep-th];
2. iIn Maxwell equations

» for Kerr, Kerr-(A)dS metrics, five-dimensional geometry of Myers-Perry - O.Lunin, J. High
Energ. Phys. (2017) 2017:138, arxiv: 1708.06766v2 [hep-th];

3. in Dirac equation
» for Kerr-Newman metric - S.Chandrasekhar, Proc. Roy. Soc. London ser. A 349, 571 (1976);

D.Page, Phys. Rev. D 14, 1509 (1976); F.Finster, N.Kamran, J.Smoller and S.-T. Yau,
Comm. Pure Appl. Math. 53, 1201 (2000);

» for Kerr-Newman-(A)dS metric - C.V.Kraniotis, J. Phys. Commun. 3, 035026 (2019), arxiv:
1801.03157;

» for five-dimensional Kerr-Newman-AdS metric - S.Q.Wu, Phys. Rev. D 80 (2009) 084009,
arxiv: 0906.2049v4 [hep-th].
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Introduction

Hereafter, we use dimensionless variables for the second-order equations
for particles with energy E, mass M and electrical charge g in the spice-

time of considered metrics

r
C

“wme
|, =#/mc is the Compton wave length of a particle;
M, =7ic/G =2.2:107 g (1-2'101QGGV) is the Planck mass;

e2

g =& 5 . . . _
fs ~7c 137 'S the electromagnetic constant of the fine structure;

a,0,, are the gravitational and electromagnetic coupling constants;

a ) o :IE; a qQ—afsﬂ' (ro=ZGM/c2, rQ:\/EQ/CZ)

5,0, are the dimensionless constants characterizing the source of the
electromagnetic field with the charge Q and the ratio of an angular
momentum J to the mass M in the Kerr and Kerr-Newman metrics.
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Quantum mechanical hypothesis of cosmological

censorship

For classical physics, the hypothesis of cosmic censorship
proposed by Penrose forbids the existence of singularities not
covered by event horizons in nature.

«Nature has an aversion for naked singularity »

R.Penrose

«lpupoOa numaem omepawieHuUe K 20/10U CUH2YISPHOCMU»

P.l'leHpoy3
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Quantum mechanical hypothesis of cosmological

censorship

In the quantum mechanics, G.T.Horowitz and D.Marolf (Phys. Rev. D 52,
5670 (1995)) actually proposed a guantum mechanical hypothesis of
cosmic censorship. They write in the Introduction: “We will say that a
system is nonsingular, when the evolution of any state is uniquely defined
for all time. If this is not the case, then there is some loss of predictability
and we will say that the system is singular” and incompatible with the
guantum theory.

Similarly to Penrose, we should add that such singular systems cannot
exist in nature.

12



Quantum mechanical hypothesis of cosmological

censorship

For the radial second-order equations reduced to the relativistic
Schrédinger-type equations with the effective potentialsU,, (o), the
behavior of these potentials in the neighborhood of event horizons is
essential.

For all the considered metrics, the behavior of effective potentials in the
neighborhood of the event horizons has often the form of an infinitely deep

potential well Us (P)  =-K/(p-p.)

PP+
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Quantum mechanical hypothesis of cosmological

censorship

If K,>1/8, a so-called “fall” of a particle to the event horizon occurs. In
this case the system is singular. The behavior of the radial function from the
Schrodinger-type equation has the following form

R(p)‘/Hp p ,0+ Sln(«/ In p 0. +5)
where K, =2(K,—(1/8)).
As p — p.. the functions of stationary states of discrete and continuous
spectrum R(p)have an unlimited number of zeros. discrete levels of

enerqgy “ dive” into the area of negative continuum. The functions R{£)do
not have the defined valuesas 2= £, .

Also, the system will be singular, if the exponent of the denominator in the
expression for the effective potential higher than two. In this case

s/4 . 2 2K
RS(IO)‘,o—mi ~('0_pi) 48'”{5 2\/(,0 pj)s_z +5s]’

where §, §, are arbitrary phases, s > 2 is the exponent in the effective
potential. 14




Quantum mechanical hypothesis of cosmological

censorship

In the Hamiltonian formulation, the mode of a "particle fall" to the event
horizons means that the Hamiltonian H has nonzero deficiency
Indexes. For elimination of this mode, it is necessary to choose the
additional boundary conditions on the event horizons. The self-
conjugate extension of the Hermitian operator H is determined by this

choice.
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Hydrogen-like atom in the strong Coulomb field

In the quantum mechanics there is an example confirming the quantum
mechanical hypothesis of cosmic censorship. For hydrogen-like atoms,
the Sommerfeld formula for the fine structure of the energy levels has

the form 2

As Z >137|«| the expression for energy becomes imaginary («the

Z >137 catastrophe»).
Let us consider solutions of the relativistic Schrodinger-type equation

with the effective potential U, for fermions in the Coulomb field. The

asymptotics of the effective potential as o — 0 has the form

_(Zafs )2 —%+(1—K2)

50 2 2 .
’ P 16

C
Ueff




Hydrogen-like atom in the strong Coulomb field

In the asymptotics, dependently on Z it is possible to single out three
characteristic areas. For example, we consider these areas for the
bound states 1S,, (x =-1), 2P, (x =+1). In the first area 1<Z <+/3/2a,

as p — 0 there exists the positive barrier ~ 1/ p* with the following
potential well. As Z =Z, =+/3/2a;, ~118.7 the potential barrier
disappears; as for Z >Z, as p — 0 the potential well -K/p® remains.

In the second area 119<Z <137 the coefficient is K <1/8 , which
permits the existence of the fermion stationary bound states.

In the third area Z >137 as © — 0 there is the potential well with

K >1/8, which is indicative of the implementation of the regime “fall” to
the center. In Fig. 1 for Z =1;119; 140 the dependencies U, (p) as

Kk=-1 (181/2) are shown. There for comparison there are shown the
dependence of the Coulomb potential V (p) = —(Zafs /p) .
17



Hydrogen-like atom in the strong Coulomb field
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Hydrogen-like atom in the strong Coulomb field

In the third area with (Zafs )2 >k’ the system “a fermion in the
Coulomb field” is singular, and incompatible with the quantum
theory. For elimination of mode “fall” to the center, it was offered to
take into account the finite sizes of nuclei (I.Ya.Pomeranchuk and
A.Smorodinsky (1945). W.Paper and W.Griener (1969)). As a
result, at the characteristic lengths of the nuclei sizes it is cut either
the Coulomb potential, or the effective one (see Fig.1 b). Presently,
there are  ~ 30 such cutting methods (D. Andrae, Physics
Reports 336, 413 (2000)).

The system “an electron in the Coulomb field of the finite-size
atomic nucleus" is nonsingular.
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Hydrogen-like atom in the strong Coulomb field
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Hydrogen-like atom in the strong Coulomb field
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Fig. 1.4. Lowest bound states of the Dirac equation for nuclei with charge Z. While the Sommerfeld
fine-structure energies {— — —) for x = — 1 (5 states) end at £ =137, the solutions for extended
Coulomb potentials ( } can be traced down to the negative-energy continuum reached at the
critical charge Z_ for the 15 state, The bound states entering the continuum obtain a spreading width
as indicated [Mo 72a]

[W.Greiner, B.Mueller, J.Rafelski. Quantum Electrodynamics of Strong Fields.
Springer-Verlag Berlin Heidelberg New York Tokyo, 1985)] 21



Effective potentials

For a closed system of “a particle in the external force field”, quantum
mechanics allows existence of stationary states with definite real
energies of particle. The stationary states involve both the states of
discrete spectrum (bound states) and states of continuous spectrum
(scattering states). In this case, the wave function of the particle is written
as w(rt)=w(r)e™,

where E is a particle energy. Here and hereafter, we use the system of
units i=c=1.

We will explore in closed systems the existence possibility of stationary
states at interaction of scalar particles (S =0), photon (S =1), fermions
(S =1/2) with the Schwarzschild, Reissner-Nordstrém, Kerr and Kert-
Newman black holes.

We consider the four-dimensional geometries with zero and non-zero
cosmological constant A and also AdS black hole geometry in five-

dimensional gauged supergravity.
22



Effective potentials

Scheme of our analysis

. Scalar uncharged particles (S =0)

2 0 V2 O
1. The Klein-Gordon equation : (-9) 67[(—9) g” e }+m2q>=0

2. Separation of variables : rt)= Z R ™ (1)Y,,, (0.0)e™

(for the spherically symmetric Schwarzschlld, Reissner-Nordstrom
metrics, Yin, (6,9) are the spherical harmonics)

Dy (1) =Y R (r)S(0)e ™ e'™?,
I,m,
(for the axially symmetric Kerr, Kerr-Newman metrics,
S(6) are the oblate spheroidal harmonic functions,
S, (ic cos@) where ¢=a’ ((Ez/mz)—l))

3. Second-order equation for radial functions R () :

IR A(p) BB (p)R =0

dp’ p 23




Effective potentials

4. Reduction to form of the Schrodinger equation with the effective

potentialU (p) : _
" R (p)=R (p)exp= jA o,

d*R _
dl(zp)+2(ESchr_Ueﬁ (,0)) RI (,0)20,
o,
1dA 1 1
Ueff (p):ESchr 4dp+8A2_§B’

Eqer = (&7 -1)/2.

In the second equation the summand Esur is singled out and at the
same time added to the third equation. On the one hand, it is done, Iin
order to impart to equation to form of the Schrodinger-type equation,
and, on the other hand, ensure the classical asymptotics of the effective
potential as p — .,

5. Study of behavior of effective potential in the neighborhood of the
event horizons.

24



Effective potentials

Il. Photons (S =1)

The Maxwell equations for the spherically symmetric Schwarzschild and
Reissner-Nordstrom metrics were written in three-dimensional form (in
three-dimensional space with metric 7, =—0i +( 909/ 90 ) . Separation of
the variables was performed via expansion of electric E(x,t) and magnetic

H(x,t)fields in terms of the vector harmonics of the electric, magnetic and
longitudinal types. For the axially symmetric Kerr, Kerr-Newman metrics,
the variables separation procedure of O.Lunin was used. As a result, the
effective potentials of the Schrodinger-type relativistic equations were
obtained.

lll. Fermion with charge (S =1/2)

For metrics under consideration, the effective potentials of the Schrodinger-
type equation were obtained in our papers (V.P.Neznamov, l.I.Safronov,
V.E.Shemarulin, J. Exp. Theor. Phys. 127 (2018), 128 (2019) ). These

papers also contain the solutions for the stationary bound states with
energies E=E® . 25



Asymptotics of effective potentials in neighborhoods

of event horizons
Schwarzschild field

scalar particle photon  fermion fermion

st
ExE E=E"=0
/ Sl .3 1
eff ~ T AA

r-r, 32 r—r 2
- (1 r; Ezj (=)
r—r (r r) 8 2

Reissner-Nordstrom field

eff

scalar particle fermion photon fermion
\ / g#&" e=c"=a, /(p.).,
i ; ] 3 1
o 4 U =
&—_em ., ©ff | (2 ) 2
J B 1 1, { (p+)RNJ (:Ja e 32 (p=(p)ay )
eff | ,_, - 2| A 2
T (e B 2 a2




Asymptotics of effective potentials in neighborhoods

of event horizons

Kerr, Kerr-Newman fields

scalar particle fermion photon fermion

PR
&= ESt — aam(p + aem (’Oi)KN

a, + (,Oi )f(N
3 1

27



Asymptotics of effective potentials in neighborhoods

of event horizons
Non-zero cosmological constant

We have proved that Kerr-Newman-(A)dS, Kerr-(A)dS, Reissner-Nordstrom-
(A)dS and Schwarzschild-(A)dS black holes have the same nature of the
divergence of effective potentials near the event horizons as in case of A =0.

For example, for the most general Kerr-Newman-(A)dS field, for the de Sitter
solution (A>0) at F =T,

scalar particle fermion photon

\ / Q. #0 ] ) /

r—r, :_(r_r )2 %
+

o {a o }
T B ) (o)) ] ({17 +27)-ma)
| 7

1
Q =E(E(r2+a2)—m¢a—quj, 2 A

[1]

+
— =1+a"—

8 2[(r+ —r)(r-r)(r -1y

We also proved that the Kerr-Newman-AdS black hole in the minimal five-

3

=
I

dimensional gauged supergravity has the same nature of the divergence of

effective potentials near the event horizons as | ur-dimensional case.
AdS black hole —— CFT 28



Asymptotics of effective potentials in neighborhoods

of event horizons

Coordinate transformations of the Schwarzschild metric

For the scalar particles, our analysis can be supplemented with the
Eddington-Finkelstein and the Painlevé-Gullstrand metrics, for
which the leading singularity in the neighborhood of event horizon
remains at the real axis and it is similar to those for the
Schwarzschild metrics.

For fermions, for the Schwarzschild space-time in the isotropic
coordinates, as well as the Eddington-Finkelstein, Painlevé-
Gullstrand, Lemaitre-Finkelstein and Kruskal-Szekeres metrics, it is
proved that in case of the stationary bound state £* =0 the leading
singularity in the event horizon neighborhood is preserved the same
as in the initial Schwarzschild metrics.

29



Incompatibility of guantum theory with the classical

conception of black holes with event horizons of zero
thickness

The analysis shows that for ¢ # ¢¥ in the considered gravitational
fields the existence of the stationary particle states is impossible.
Systems “a particle in the gravitational and electromagnetic fields”
are singular and incompatible with the quantum theory.

30



Incompatibility of guantum theory with the classical

conception of black holes with event horizons of zero
thickness

Existence of the stationary discrete states with £=¢" does not change the
previous conclusion because to attain the values " it is necessary to have
the quantum transitions with emission or absorption of the photons with
defined energy. However, qguantum mechanical stationary states of photons
with real energy @ do not exist in the considered gravitational and
electromagnetic fields.

For all the considered metrics and particles with different spins it is
characteristic the universal nature of the divergence of the effective
potentials near to the event horizons. Uncovered singularities doesn't
allow using the quantum theory in full measure that leads to the necessity

of changing the initial formulation of the physical problem.
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Discussion and conclusion

1. Isit possible to cure the concerned GR solutions from the
standpoint of quantum mechanics?

The answer to this question is negative. Actually, the uniqueness
theorem for the black holes affirms that the most general
asymptotically flat solution of the GR equations is the Kerr metrics
with the monopole mass M and the angular momentum J (M.
Heusler, Cambrige, UK (1996)). Any deviation from the spherically
symmetric mass distribution leads to the event horizon
disappearance and appearance of series of naked singularities
Instead (see the static and stationary g-metrics).

32



Discussion and conclusion

1.1 Deformed distribution of the collapsar mass: prolate or oblate
along the axis 7

the Schwarzschild metric:

ds? =[1-2M gz -2 dr? —r?(d6” +sin® 6d¢?)
r 1_2m

r
The static g-metric (Quevedo, Int. J.Mod. Phys. D (2011))

-q(2+q)

1+q 2 a2 2
dszz(l—z—mj dtz—( 1 14 SN0 ar +r°d@” |+ r’sin®0dp*

q
' 1_2_m] rz(l—z—mj (1—2—mj
r r r

g€(-10) is the prolate mass distribution
qe(0,0) is the oblate mass distribution

33



Discussion and conclusion

As a result, we have “naked singularity” instead of a black hole as
r—r, forany q=0.

One can build a stationary g-metric (Quevedo at al., arxiv:
1510.04155v1).

The similar conclusion: a black hole transforms to naked singularity
on the surface covering the Schwarzschild event horizon.

1.2 Nonpoint collapsar and linkage.

If, similarly to the Coulomb potentiasl as Z 2137 (x =-1) , we perform
the linkage of the GR external vacuum solutions with the internal
solution options, preserving the continuity of the metric tensor and its
first derivatives, then the linkage radius will larger than the radius of
the external event horizon. This is not a black hole!!!

As a result, in the mentioned above cases we deviate from the
classical black holes with the event horizons.

34



Discussion and conclusion

2. Is it possible to use the concerned classical GR solutions from the
standpoint of qguantum mechanics?

Is it possible to blur the event horizons in a natural way?

Our answer to these questions is positive and we propose to supplement
the gravitational collapse mechanism.

Let us, at the last collapse stage the gravitational field captures the half-
spin particles, which after the formation of the event horizons will get into
the stationary bound states with ¢ =& both under the inner and above
external event horizons. For the next particles interacting with such
compound systems, the self-consistent gravitational and electromagnetic
fields will be determined both by mass and charge of collapsar , and by
the masses and charges of the fermions in the stationary bound states
with € =¢" in the neighborhood of the event horizons.

35



Discussion and conclusion

Obviously, such system may be nonsingular. To provide a strong proof
there are required exact calculations of the self-consistent gravitational
and electromagdnetic fields. as well as the proof that the stationary states
of the quantum-mechanical probe particles exist in these fields. The
discussed compound systems may be considered as the dark matter
carriers. On the other hand, these systems may be the building blocks for
joining new particles and formation of the macroscopic objects in the long

run.

W =0.95




Discussion and conclusion

CONCLUSION

The quantum theory is incompatible with the existence of the
Schwarzschild, Reissner-Nordstrom, Kerr, Kerr-Newman black holes with
event horizons of zero thickness that were predicted based on the GR
solutions with zero and non-zero cosmological constant A .
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Myths of classical solutions of the general relativity
theor

classical theory

unstable system
electron + proton

ergoregion in Kerr, Kerr-

Newman metrics for

rotating system
(r*—rr+a*cos’6+15)=0

ring singularity in Kerr, Kerr-
Newman metrics (r®=a’)

hypothesis of Penrose’s
cosmic censorship

black holes with event
5 horizons of zero
thickness

guantum theory

stable atomic systems

ergoregion does not appear in the quantum
Klein-Gordon-Fock, Maxwell, Dirac equations
and in effective potentials

ring singularity does not appear in quantum
equations and in effective potentials

there is not confirmation for Reissner-
Nordstrém, Kerr and Kerr-Newman metrics in
fermion Schrédinger-type equations with
effective potentials

guantum theory is incompatible with the
conception of black holes with event
horizons of zero thickness

phenomenology: firewalls, generalized
principle of uncertainty etc.

compound systems: collapsars with
fermions in stationary bound states

opinion of
physical
community
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Particle Creation by Black Holes

S. W. Hawking

Department of Applied Mathematics and Theoretical Physics, University of Cambridge,
Cambridge, England

Received April 12, 1975

Abstract. In the classical theory black holes can only absorb and not emit particles. However it
is shown that quantum mechanical effects cause black holes to create and emit particles as if they
were hot bodies with temperature 2—;ﬁ10—6 (%) “K where x is the surface gravity of the black
hole. This thermal emission leads to a slow decrease in the mass of the black hole and to its eventual
disappearance: any primordial black hole of mass less than about 10'° g would have evaporated by
now. Although these quantum effects violate the classical law that the area of the event horizon of a
black hole cannot decrease, there remains a Generalized Second Law: S+ A4 never decreases where S
is the entropy of matter outside black holes and A is the sum of the surface areas of the event horizons.
This shows that gravitational collapse converts the baryons and leptons in the collapsing body into
entropy. It is tempting to speculate that this might be the reason why the Universe contains so much

entropy per baryon.

Discussion and conclusion
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In order to calculate this asymptotic form it is more convenient to decompose
the ingoing and outgoing solutions of the wave equation into their Fourier com-
ponents with respect to advanced or retarded time and use the continuum nor-
malization. The finite normalization solutions can then be recovered by adding
Fourier components to form wave packets. Because the space-time is spherically
symmetric, one can also decompose the incoming and outgoing solutions into
spherical harmonics. Thus, in the region outside the collapsing body, one can
write the incoming and outgoing solutions as

Jorm=2m) "™ @) F, ()" Y,,(0. ¢) (2.11)
Poim=(21) Fr ™ L 2P (1) Y, (0, @) , (2.12)
where v and u are the usual advanced and retarded coordinates defined by
r
v=t+r+2M log ﬂ_l , (2.13)
U=t—r—2M log Etﬁ_l . (2.14)

Each solution p,,,, can be expressed as an integral with respect to w’ over solu-
tions f,, and f,.,, with the same values of | and |m| (from now on I shall drop
the suffices [, m):

Py= J‘Ea{aww’fm' +ﬁmm'fm‘}dmj . (215)

To calculate the coefficients «,, and g, consider a solution p, propagating
backwards from .#* with zero Cauchy data on the event horizon. A part p!’ of
the solution p,, will be scattered by the static Schwarzchild field outside the col-
lapsing body and will end up on .#~ with the same frequency w. This will give
a 8(w'—w) term in a,,,.. The remainder p?’ of p,, will enter the collapsing body

Discussion and conclusion
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Discussion and conclusion




Thank you for your attention!



