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The report considers the interaction of scalar particles, photons and 

fermions with the gravitational and electromagnetic Schwarzschild, 

Reissner-Nordström, Kerr and Kerr-Newman fields. The behavior of 

effective potentials in the relativistic Schrödinger-type second-order 

equations is analyzed. It was found that the quantum theory is 

incompatible with the hypothesis of the existence of classical black 

holes with event horizons of zero thickness that were predicted based 

on solutions of the general relativity with zero and non-zero 

cosmological constant     . 

The alternative may be presented by compound systems, i.e., 

collapsars with fermions in stationary bound states. 



Introduction  
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Introduction  

The following papers are ready for publication 
 

1. Quantum mechanics of particle stationary states in external singular spherically 

and axially symmetric gravitational fields // M.V.Gorbatenko and V.P.Neznamov .  

 

2. Quantum mechanics of particle stationary states in external singular spherically 

and axially symmetric gravitational fields with non-zero cosmological constant // 

M.V.Gorbatenko and V.P.Neznamov .  

 

3. Quantum mechanics of stationary states of particles interacting with non-extreme 

rotating charged  black holes in minimal five-dimensional  gauged supergravity // 

M.V.Gorbatenko and V.P.Neznamov . 
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Introduction  

We also used the results of separation of variables:  
 

1. in Klein-Gordon equation 

 for Kerr-Newman metric - V.B.Bezerra, H.S.Viera and André A.Costa, Class. Quantum Grav. 

31, 045003 (2014); 

 for Kerr-Newman-(A)dS metric - G.V.Kraniotis, Class. Quantum Grav. 33, 225011 (2016); 

 for five-dimensional geometry of Kerr-Newman-AdS - S.Q.Wu, Phys. Rev. D 80 (2009) 

084009, arxiv:0906.2049v4 [hep-th]; 

2. in Maxwell equations 

 for Kerr, Kerr-(A)dS metrics, five-dimensional geometry of Myers-Perry - O.Lunin, J. High 

Energ. Phys. (2017) 2017:138, arxiv: 1708.06766v2 [hep-th]; 

3. in Dirac equation 

 for Kerr-Newman metric - S.Chandrasekhar, Proc. Roy. Soc. London ser. A 349, 571 (1976);  

     D.Page, Phys. Rev. D 14, 1509 (1976); F.Finster, N.Kamran, J.Smoller and S.-T. Yau, 

     Comm. Pure Appl. Math. 53, 1201 (2000); 

 for Kerr-Newman-(A)dS metric - C.V.Kraniotis, J. Phys. Commun. 3, 035026 (2019), arxiv: 

1801.03157; 

 for five-dimensional Kerr-Newman-AdS metric - S.Q.Wu, Phys. Rev. D 80 (2009) 084009, 

arxiv: 0906.2049v4 [hep-th]. 
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Hereafter, we use dimensionless variables for the second-order equations 

for particles with energy    , mass     and electrical charge    in the spice-

time of considered metrics 
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                          is the electromagnetic constant of the fine structure; 
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For classical physics, the hypothesis of cosmic censorship 

proposed by Penrose forbids the existence of singularities not 

covered by event horizons in nature. 

«Природа питает отвращение к голой сингулярности» 

Р.Пенроуз 

Quantum mechanical hypothesis of cosmological 
censorship 

«Nature has an aversion for naked singularity» 

R.Penrose 
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In the quantum mechanics, G.T.Horowitz and D.Marolf (Phys. Rev. D 52, 

5670 (1995)) actually proposed a quantum mechanical hypothesis of 

cosmic censorship. They write in the Introduction: “We will say that a 

system is nonsingular, when the evolution of any state is uniquely defined 

for all time. If this is not the case, then there is some loss of predictability 

and we will say that the system is singular” and incompatible with the 

quantum theory. 

 Similarly to Penrose, we should add that such singular systems cannot 

exist in nature. 

Quantum mechanical hypothesis of cosmological 
censorship 
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For the radial second-order equations reduced to the relativistic 

Schrödinger-type equations with the effective potentials            , the 

behavior of these potentials in the neighborhood of event horizons is 

essential. 

 

For all the considered metrics, the behavior of effective potentials in the 

neighborhood of the event horizons has often the form of an infinitely deep 

potential well 

 effU 
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If              , a so-called “fall” of a particle to the event horizon occurs. In 

this case the system is singular. The behavior of the radial function from the 

Schrödinger-type equation has the following form 

 

 

where                             .    

As             , the functions of stationary states of discrete and continuous 

spectrum          have an unlimited number of zeros, discrete levels of 

energy “ dive” into the area of negative continuum.  The functions           do 

not have the defined values as             . 

Also, the system will be singular, if the exponent of the denominator in the 

expression for the effective potential higher than two. In this case 

 

   

 

where         are arbitrary phases,         is the exponent in the effective 

potential. 
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Quantum mechanical hypothesis of cosmological 
censorship 

In the Hamiltonian formulation, the mode of a ''particle fall'' to the event 

horizons means that the Hamiltonian      has nonzero deficiency 

indexes. For elimination of this mode, it is necessary to choose the 

additional boundary conditions on the event horizons. The self-

conjugate extension of the Hermitian operator      is determined by this 

choice. 

H

H
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In the quantum mechanics there is an example confirming the quantum 

mechanical hypothesis of cosmic censorship. For hydrogen-like atoms, 

the Sommerfeld formula for the fine structure of the energy levels has 

the form 
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As                  the expression for energy becomes imaginary («the 

             catastrophe»). 

Let us consider solutions of the relativistic Schrödinger-type equation 

with the effective potential       for fermions in the Coulomb field.  The 

asymptotics of the effective potential as            has the form 
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Hydrogen-like atom in the strong Coulomb field 

In the asymptotics, dependently on     it is possible to single out three 

characteristic areas. For example, we consider these areas for the 

bound states                                        . In the first area 

as            there exists the positive barrier           with the following 

potential well. As                                        the potential barrier 

disappears; as for            as           the potential well            remains. 

In the second area                      the coefficient is            , which 

permits the existence of the fermion stationary bound states. 

In the third area             as            there is the potential well with 

           , which is indicative of the implementation of the regime “fall” to 

the center. In Fig. 1 for                       the dependencies             as 

                     are shown. There for comparison there are shown the 

dependence of the Coulomb potential                             . 
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     

 

2
2

20

2

1 2

3 4 1

2

1 1 ; 1

Sf

eff

Z
U

S E mc



 







  
 

  

20

3 2 118.7
Scr f

eff

Z

K
U







 

 

Sf
V Z  

Sf
V Z  

a) 

b) 

Hydrogen-like atom in the strong Coulomb field 

Fig. 1. The dependencies            and          .  V  effU 



19 

Hydrogen-like atom in the strong Coulomb field 

In the third area with                      the system “a fermion in the 

Coulomb field” is singular, and incompatible with the quantum 

theory. For elimination of mode “fall” to the center, it was offered to 

take into account the finite sizes of nuclei (I.Ya.Pomeranchuk and 

A.Smorodinsky (1945). W.Paper and W.Griener (1969)). As a 

result, at the characteristic lengths of the nuclei sizes it is cut either 

the Coulomb potential, or the effective one (see Fig.1 b). Presently, 

there are     ~ 30 such cutting methods (D. Andrae, Physics 

Reports 336, 413 (2000)). 

The system “an electron in the Coulomb field of the finite-size 

atomic nucleus'' is nonsingular. 
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Hydrogen-like atom in the strong Coulomb field 

[W.Greiner, B.Mueller, J.Rafelski. Quantum Electrodynamics of Strong Fields. 

Springer-Verlag Berlin Heidelberg New York Tokyo, 1985)] 
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Effective potentials 

For a closed system of “a particle in the external force field”, quantum 

mechanics allows existence of stationary states with definite real 

energies of particle. The stationary states involve both the states of 

discrete spectrum (bound states) and states of continuous spectrum 

(scattering states).  In this case, the wave function of the particle is written 

as 

where     is a particle energy. Here and hereafter, we use the system of 

units              .  

We will explore in closed systems the existence possibility of stationary 

states at interaction of scalar particles           , photon          , fermions 

              with the Schwarzschild, Reissner-Nordström, Kerr and Kerr-

Newman black holes. 

We consider the four-dimensional geometries with zero and non-zero 

cosmological constant     and also AdS black hole geometry in five-

dimensional gauged supergravity. 
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             I. Scalar uncharged particles  

1. The Klein-Gordon equation :  

2. Separation of variables : 

(for the spherically symmetric Schwarzschild, Reissner-Nordström 

metrics,                are the spherical harmonics) 
 

 

(for the axially symmetric Kerr, Kerr-Newman metrics, 

          are the oblate spheroidal harmonic functions, 

                     where                             )  

3. Second-order equation for radial functions          : 
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4. Reduction to form of the Schrödinger equation with the effective 

potential            : 

 

 

 

 

 

 

In the second equation the summand         is singled out and at the 

same time added to the third equation. On the one hand, it is done, in 

order to impart to equation to form of the Schrödinger-type equation, 

and, on the other hand, ensure the classical asymptotics of the effective 

potential as           . 

5. Study of behavior of effective potential in the neighborhood of the 

event horizons. 
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Effective potentials 

   II. Photons 

The Maxwell equations for the spherically symmetric Schwarzschild and 

Reissner-Nordstrom metrics were written in three-dimensional form (in 

three-dimensional space with metric                                   . Separation of 

the variables was performed via expansion of electric            and magnetic  

            fields in terms of the vector harmonics of the electric, magnetic and 

longitudinal types. For the axially symmetric Kerr, Kerr-Newman metrics, 

the variables separation procedure of O.Lunin was used. As a result, the 

effective potentials of the Schrodinger-type relativistic equations were 

obtained. 

III. Fermion with charge  

For metrics under consideration, the effective potentials of the Schrodinger-

type equation were obtained in our papers (V.P.Neznamov, I.I.Safronov, 

V.E.Shemarulin, J. Exp. Theor. Phys. 127 (2018), 128 (2019) ). These 

papers also contain the solutions for the stationary bound states with 

energies            . 
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fermion 
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Kerr, Kerr-Newman fields 
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Non-zero cosmological constant  

We have proved that Kerr-Newman-(A)dS, Kerr-(A)dS, Reissner-Nordström-

(A)dS and Schwarzschild-(A)dS black holes have the same nature of the 

divergence of effective potentials near the event horizons as in case of          . 

For example, for the most general Kerr-Newman-(A)dS field, for the de Sitter 

solution             at  
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We also proved that the Kerr-Newman-AdS black hole in the minimal five-

dimensional gauged supergravity has the same nature of the divergence of 

effective potentials near the event horizons as in the four-dimensional case. 

AdS black hole             CFT 

Asymptotics of effective potentials in neighborhoods 
of event horizons 
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Coordinate transformations of the Schwarzschild metric 

Asymptotics of effective potentials in neighborhoods 
of event horizons 

For the scalar particles, our analysis can be supplemented with the 

Eddington-Finkelstein and the Painlevé-Gullstrand metrics, for 

which the leading singularity in the neighborhood of event horizon 

remains at the real axis and it is similar to those for the 

Schwarzschild metrics. 

For fermions, for the Schwarzschild space-time in the isotropic 

coordinates, as well as the Eddington-Finkelstein, Painlevé-

Gullstrand, Lemaitre-Finkelstein and Kruskal-Szekeres metrics, it is 

proved that in case of the stationary bound state           the leading 

singularity in the event horizon neighborhood is preserved the same 

as in the initial Schwarzschild metrics. 

0st 
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Incompatibility of quantum theory with the classical 
conception of black holes with event horizons of zero 

thickness 

The analysis shows that for           in the considered gravitational 

fields the existence of the stationary particle states is impossible. 

Systems “a particle in the gravitational and electromagnetic fields” 

are singular and incompatible with the quantum theory. 

st 
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Incompatibility of quantum theory with the classical 
conception of black holes with event horizons of zero 

thickness 

Existence of the stationary discrete states with           does not change the 

previous conclusion because to attain the values      it is necessary to have 

the quantum transitions with emission or absorption of the photons with 

defined energy. However, quantum mechanical stationary states of photons 

with real energy      do not exist in the considered gravitational and 

electromagnetic fields.  

For all the considered metrics and particles with different spins it is 

characteristic the universal nature of the divergence of the effective 

potentials near to the event horizons. Uncovered  singularities doesn’t 

allow using the quantum theory in full measure that leads to the necessity 

of changing the initial formulation of the physical problem. 



st 

st
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Discussion and conclusion 

1. Is it possible to cure the concerned GR solutions from the 

standpoint of quantum mechanics?  

The answer to this question is negative. Actually, the uniqueness 

theorem for the black holes affirms that the most general 

asymptotically flat solution of the GR equations is the Kerr metrics 

with the monopole mass       and the angular momentum     (M. 

Heusler, Cambrige, UK (1996)). Any deviation from the spherically 

symmetric mass distribution leads to the event horizon 

disappearance and appearance of series of naked singularities 

instead (see the static and stationary q-metrics). 

M J
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 1,0q 

 0,q  is the oblate mass distribution 

Discussion and conclusion 

1.1 Deformed distribution of the collapsar mass: prolate or oblate 

along the axis            

 the Schwarzschild metric: 

Z

The static q-metric (Quevedo, Int. J.Mod. Phys. D (2011)) 

is the prolate mass distribution 
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Discussion and conclusion 

As a result, we have “naked singularity” instead of a black hole as 

          for any         .  

One can build a stationary q-metric (Quevedo at al., arxiv: 

1510.04155v1). 

The similar conclusion: a black hole transforms to naked singularity  

on the surface covering the Schwarzschild event horizon. 

0r r 0q 

1.2 Nonpoint collapsar and linkage. 

If, similarly to the Coulomb potentiasl as                         , we perform 

the linkage of the GR external vacuum solutions with the internal 

solution options, preserving the continuity of the metric tensor and its 

first derivatives, then the linkage radius will larger than the radius of 

the external event horizon. This is not a black hole!!! 

 137 1Z   

As a result, in the mentioned above cases we deviate from the 

classical black holes with the event horizons. 
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Discussion and conclusion 

2. Is it possible to use the concerned classical GR solutions from the 

standpoint of quantum mechanics? 

Is it possible to blur the event horizons in a natural way? 

Our answer to these questions is positive and we propose to supplement 

the gravitational collapse mechanism. 

Let us, at the last collapse stage the gravitational field captures the half-

spin particles, which after the formation of the event horizons will get into 

the stationary bound states with            both under the inner and above 

external event horizons. For the next particles interacting with such 

compound systems, the self-consistent gravitational and electromagnetic 

fields will be determined both by mass and charge of collapsar , and by 

the masses and charges of the fermions in the stationary bound states 

with             in the neighborhood of the event horizons. 

st 

st 
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Discussion and conclusion 

Obviously, such system may be nonsingular. To provide a strong proof, 

there are required exact calculations of the self-consistent gravitational 

and electromagnetic fields, as well as the proof that the stationary states 

of the quantum-mechanical probe particles exist in these fields. The 

discussed compound systems may be considered as the dark matter 

carriers. On the other hand, these systems may be the building blocks for 

joining new particles and formation of the macroscopic objects in the long 

run. 
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Discussion and conclusion 

CONCLUSION 

 

The quantum theory is incompatible with the existence of the 

Schwarzschild, Reissner-Nordström, Kerr, Kerr-Newman black holes with 

event horizons of zero thickness that were predicted based on the GR 

solutions with zero and non-zero cosmological constant      . 



Myths of classical solutions of the general relativity 
theory 
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1 stable atomic systems + 
unstable system 

electron + proton 

- 2 

ergoregion does not appear in the quantum 

Klein-Gordon-Fock, Maxwell, Dirac equations 

and in effective potentials 

ergoregion in Kerr, Kerr-

Newman metrics for  

rotating system 

 2 2 2 2

0 cos 0Qr r r a r   

ring singularity in Kerr, Kerr-

Newman metrics  - 3 
ring singularity does not appear in quantum 

equations and in effective potentials  2 2r a

+ 

- 
4 

hypothesis of Penrose’s 

cosmic censorship  

there is not confirmation for Reissner-

Nordström, Kerr and Kerr-Newman metrics in 

fermion Schrödinger-type equations with 

effective potentials 

- 5 
black holes with event 

horizons of zero 

thickness 

quantum theory is incompatible with the 

conception of black holes with event 

horizons of zero thickness 

+ 
 - 6 - phenomenology: firewalls, generalized 

principle of uncertainty etc. 

- 

compound systems: collapsars with 

fermions in stationary bound states 



39 

Discussion and conclusion 
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Discussion and conclusion 
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Discussion and conclusion 



Thank you for your attention! 


