Dispersion relations and Renormalization group: QCD calculation of pion-photon transition form factor

S. Mikhailov^[1], C. Ayala^[2], N. Stefanis^[3] and A. Pimikov^[4]

based on PRD 98 (2018) 096017

[1] Bogoliubov Lab. Theor. Phys., JINR (Dubna, Russia)
[2] Department of Physics, Universidad Técnica FSM, Valparaíso, Chile
[3] Institut für Theoretische Physik II, Ruhr-Universität Bochum, Germany
[4] Institute of Modern Physics, CAS, Lanzhou, China

QFTHEP'2019 @Sochi, Russia

Exclusive hard process $\gamma(q^2\simeq 0)\gamma^*(Q^2)
ightarrow\pi^0$ **Pion-photon transition form factor** at large standard QCD corrections within Light Cone Sum Rules M.S. & Pimikov A. & Stefanis N., PRD 93 (2016) 114018; Ayala C. &M.S. &Stefanis N., PRD 98 (2018) 096017

QFTHEP'2019 @Sochi, Russia

OUTLINE

- 1. Intro: Experimental and Theoretical motivations to modify fixed order pQCD (FOPT) calculation of transition FF for $\gamma\gamma^*(Q^2) \rightarrow \pi^0$ at low Q^2 .
- 2. Current status of Light Cone SR (LCSR) predictions in $N^2 LO_{\beta_0}$ FOPT
- Dispersive form for pion TFF + RG generates a "New" perturbation theory - fractional APT. Behavior of FAPT couplings.
- 4. Light cone sum rules within FAPT: new prediction for the pion-photon TFF
- 5. Conclusions

Experimental status of pion transition FF

Why it is interesting for QCD?

The measurements of TFF is the clean experiment that has the best accuracy (BESIII!) among others exclusive hard reactions

CELLO (1991) $Q^2 : 0.7 - 2.2 \text{ GeV}^2$ CLEO (1998) $Q^2 : 1.6 - 8.0 \text{ GeV}^2$ agrees with collinear QCD BaBar (2009) $Q^2 : 4 - 40 \text{ GeV}^2$ TFF has growing tendency with Q^2 creating the "BaBar puzzle"

Belle (2012) $Q^2 : 4 - 40$ GeV² returns to collinear QCD

BESIII (2019) $Q^2: 0.3 - 3.1 \text{ GeV}^2$ Promising very precise data (preliminary, arXiv:1810.00654)

Theoretical status of the pion TFF Why it is interesting for QCD?

Theoretical advances in both parts of QCD factorization:

Shigh order NNLO_{β} contribution $O(\alpha_s^2\beta_0)$ to the hard part; strib. amplit. (BMS2001&QCDSR) of twist-2 for pion part; Scontributions from twist-4 and corrections a'la twist-6.

QFTHEP'2019 @Sochi, Russia

Theoretical status of pion TFF in QCD FOPT

Hard process at $-Q^2, -q^2 \gg m_\rho^2 \Rightarrow$ collinear factorization $F_{\text{FOPT}}^{(\text{tw=2})}(Q^2, q^2) = N_{\text{T}} \left(T_{\text{LO}} + a_s T_{\text{NLO}} + a_s^2 T_{\text{NNLO}} + \dots \right) \otimes \varphi_{\pi}^{(2)}$

$$\begin{split} \mathbf{T_{LO}} &= a_s^0 \ T_0(x) \equiv 1/\left(q^2 \bar{y} + Q^2 y\right) \\ \mathbf{a_s T_{NLO}} &= a_s^1 \ T_0(y) \otimes \left[\mathcal{T}^{(1)} + \underline{L} \ V_0\right](y, x) \,, \\ \mathbf{a_s^2 T_{NNLO}} &= a_s^2 \ T_0(y) \otimes \left[\mathcal{T}^{(2)} - \underline{L} \ \mathcal{T}^{(1)} \beta_0 + \underline{L} \ \mathcal{T}^{(1)} \otimes V_0 - \underline{\frac{L^2}{2}} \ \beta_0 V_0 \right. \\ &\left. + \frac{L^2}{2} \ V_0 \otimes V_0 + \underline{L} \ V_1 \right](y, x) \,, \end{split}$$

 $L = L(y) = \ln \left[(q^2 \bar{y} + Q^2 y) / \mu_F^2 \right]$ Plain terms $\mathcal{T}^{(1)}, \mathcal{T}^{(2)}(\mathcal{T}^{(2)}_{\beta})$ corrections to parton subprocess; <u>Underlined</u> terms due to $\bar{a}_s(y)$ and ERBL, V_0 - kernel; <u>underlined</u> term - two loops ERBL, V_1 - kernel.

QFTHEP'2019 @Sochi, Russia

 $\gamma(q^2\simeq 0)\gamma^*(Q^2)
ightarrow\pi^0$

Status of Light Cone Sum Rules at N²LO

M.S. & Pimikov A. & Stefanis N., PRD 93 (2016) 114018

QFTHEP'2019 @Sochi, Russia

Pion TFF in LCSR in FOPT vs exp. data

Theor. predictions on $F_{\gamma\gamma^*\pi}$: LCSR \oplus N²LO \oplus DA BMS \oplus tw4,6

The data points which agree well with BMSP LCSR predictions CELLO, CLEO, $BaBar_{Q^2 < 9 \text{ GeV}^2}$ (2009), $BaBar_{\eta'}^{\eta}$ (2011), the most of Belle (2012) New development for analysis of all experimental data in [1904.02631, Stefanis].

Pion TFF in LCSR in FOPT vs exp. data

QFTHEP'2019 @Sochi, Russia

Pion TFF in pQCD with RG improvement

Collecting all of the "underlined" <u>terms</u> of RG-evolution into $a_s(\mu^2) \rightarrow \bar{a}_s(y) \equiv \bar{a}_s(q^2 \bar{y} + Q^2 y)$ and ERBL–factor.

$$\boldsymbol{F^{(\mathsf{tw=2})}(Q^2, q^2)} = N_{\mathsf{T}}T_0(y) \bigotimes_{y} \left\{ \left[1 + \bar{\boldsymbol{a}}_s(y)\mathcal{T}^{(1)}(y, x) + \bar{\boldsymbol{a}}_s^2(y)\mathcal{T}^{(2)}(y, x) + \dots \right] \bigotimes_{x} \right\}$$

$$\exp\left[-\int_{a_s}^{\bar{a}_s(y)} d\alpha \, \frac{V(\alpha; x, z)}{\beta(\alpha)}\right] \bigg\} \, \underset{z}{\otimes} \, \varphi_{\pi}^{(2)}(z, \mu^2) \, ,$$

 $\varphi_{\pi}^{(2)}(x,\mu^2) = \psi_0(x) + \sum_{n=2,4,\dots} b_n(\mu^2) \ \psi_n(x) - \mathbf{Gegenbauer\ harmonics}$

$$F^{(\mathsf{tw=2})}(Q^2, q^2) = F_0^{\mathsf{RG}}(Q^2, q^2) + \sum_{n=2,4,\dots}^{\infty} b_n(\mu^2) F_n^{\mathsf{RG}}(Q^2, q^2)$$
$$F_n^{\mathsf{RG}}(Q^2, q^2) = N_{\mathsf{T}} T_0(y) \bigotimes_{y} \left\{ \left[1 + \bar{a}_s(y) \mathcal{T}^{(1)}(y, x) \right] \left(\frac{\bar{a}_s(y)}{a_s(\mu^2)} \right)^{\nu_n} \right\} \bigotimes_{x} \psi_n(x)$$
One loop resumed result, $\nu_n = \gamma_n/2\beta_0$

QFTHEP'2019 @Sochi, Russia

$$\gamma(q^2\simeq 0)\gamma^*(Q^2)
ightarrow\pi^0$$

Dispersive form for pion TFF + RG
a "New" perturbation theory -
fractional APT.
Properties of FAPT couplings.

0

QFTHEP'2019 @Sochi, Russia

Dispersion relations and renorm.group – p. 11

 \frown

Dispersive form of TFF leads to fractional APT

$$\left[F_{(1l)n}(Q^2,q^2)\right]_{\rm an} = \int_{m^2}^{\infty} \frac{\rho_F(Q^2,\sigma)}{\sigma + q^2 - i\epsilon} \, d\sigma, \ \rho_F(\sigma) = \frac{{\rm Im}}{\pi} \Big[F_{(1l)n}(Q^2,-\sigma)\Big]$$

Appear the FAPT $A_{\nu}, \mathfrak{A}_{\nu}$ couplings + a New one - $\mathcal{I}_{\nu}!$

$$\nu(0)=0; \mathbf{F}_{(1l),0}^{\mathsf{FAPT}}(Q^{2},q^{2};\boldsymbol{m^{2}})=N_{T}T_{0}(Q^{2},q^{2};y) \underset{y}{\otimes} \left\{1+\mathbb{A}_{1}(\boldsymbol{m^{2}},y)\mathcal{T}^{(1)}(y,x)\right\} \underset{x}{\otimes} \psi_{0}(x)$$

$$\nu(n)\neq0; \mathbf{F}_{(1l),n}^{\mathsf{FAPT}}(Q^{2},q^{2};\boldsymbol{m^{2}})=\frac{N_{T}}{a_{s}^{\nu_{n}}(\mu^{2})}T_{0}(Q^{2},q^{2};y) \underset{y}{\otimes} \left\{\mathbb{A}_{\boldsymbol{\nu_{n}}}(\boldsymbol{m^{2}},y)1+\mathbb{A}_{1+\boldsymbol{\nu_{n}}}(\boldsymbol{m^{2}},y)\mathcal{T}^{(1)}(y,x)\right\} \underset{x}{\otimes} \psi_{n}(x)$$

The same expression as for RG-case, $\mathbb{A}_{\nu}(m^2, y) \Leftrightarrow \bar{a}_s^{\nu}(y)$ $\mathbb{A}_{\nu}(m^2, y) = \mathcal{I}_{\nu}(m^2, Q(y)) - \mathfrak{A}_{\nu}(m^2); \ \mathbb{A}_{\nu}(0, y) = \mathcal{A}_{\nu}(Q(y)) - \mathfrak{A}_{\nu}(0)$

the certain kinematics enters by means of $Q(y) \equiv q^2 \bar{y} + Q^2 y$

QFTHEP'2019 @Sochi, Russia

Dispersive "Källen–Lehmann" representation

Different effective couplings in Euclidean, \mathcal{A}_n , and Minkowsk., \mathfrak{A}_n , regions $\overline{\alpha}_s^n \to \{\mathcal{A}_n, \mathfrak{A}_n\}$ [Shirkov&Solovtsov1997-07]

$$\left[f(Q^2)\right]_{\rm an} = \int_0^\infty \frac{\rho_f(\sigma)}{\sigma + Q^2 - i\epsilon} \, d\sigma, \ \ \rho_n(\sigma) = \frac{{\rm Im}}{\pi} \left[\overline{a}_s^n(-\sigma)\right] \beta_0$$

For 1 loop run (here pole remover), $L = \ln{(Q^2/\Lambda^2)}$:

$$\rho_{1}(\sigma) \stackrel{\underline{1}\underline{l}}{=} \frac{1}{L_{\sigma}^{2} + \pi^{2}}$$

$$\mathcal{A}_{1}[L] = \int_{0}^{\infty} \frac{\rho_{1}(\sigma)}{\sigma + Q^{2}} d\sigma \stackrel{\underline{1}\underline{l}}{=} \frac{1}{L} - \frac{1}{e^{L} - 1}$$

$$\mathfrak{A}_{1}[L_{s}] = \int_{s}^{\infty} \frac{\rho_{1}(\sigma)}{\sigma} d\sigma \stackrel{\underline{1}\underline{l}}{=} \frac{1}{\pi} \arccos \frac{L_{s}}{\sqrt{\pi^{2} + L_{s}^{2}}}$$
Inequality:
$$a_{s}^{n}[L] > (\mathcal{A}_{n}[L], \mathfrak{A}_{n}[L]) \stackrel{L \to \infty}{\longrightarrow} a_{s}^{n}[L]$$

QFTHEP'2019 @Sochi, Russia

APT: Distorting mirror

[Shirkov&Solovtsov1997-2007]

First, coupling images: $\mathfrak{A}_1(s)$ and $\mathcal{A}_1(Q^2)$

QFTHEP'2019 @Sochi, Russia

APT: Distorting mirror

[Shirkov&Solovtsov1997-2007]

Second, square-images: $\mathfrak{A}_2(s)$ and $\mathcal{A}_2(Q^2)$

QFTHEP'2019 @Sochi, Russia

FAPT(Eucl): Properties of $\mathcal{A}_{\nu}[L]$

Euclidean coupling (pole remover) [Bakulev,MS,Stefanis 2005-07]:

$$\mathcal{A}_{
u}[L] = rac{1}{L^{
u}} - rac{F(e^{-L},1-
u)}{\Gamma(
u)}$$

Here $F(z, \nu)$ is reduced Lerch transcendental function. It is analytic function in ν .

FAPT(Eucl): Properties of $\mathcal{A}_{\nu}[L]$

Euclidean coupling (pole remover) [Bakulev,MS,Stefanis 2005-07]:

$$\mathcal{A}_{
u}[L] = rac{1}{L^{
u}} - rac{F(e^{-L},1-
u)}{\Gamma(
u)}$$

Here $F(z,\nu)$ is reduced Lerch transcendental function. It is analytic function in ν . Properties: The charge $\mathcal{A}_{\nu}(Q^2)$ is Bounded for $\nu \ge 1$,

- $A_0[L] = 1;$
- $\mathcal{A}_{-m}[L] = L^m$ for $m \in \mathbb{N}$;
- ${}$ $\mathcal{A}_{
 u}[\pm\infty]=0$ for u>1 ;

FAPT(Eucl): Properties of $\mathcal{A}_{\nu}[L]$

Euclidean coupling (pole remover) [Bakulev,MS,Stefanis 2005-07]:

$$\mathcal{A}_{
u}[L] = rac{1}{L^{
u}} - rac{F(e^{-L},1-
u)}{\Gamma(
u)}$$

Here $F(z,\nu)$ is reduced Lerch transcendental function. It is analytic function in ν . Properties: The charge $\mathcal{A}_{\nu}(Q^2)$ is Bounded for $\nu \ge 1$,

• $A_0[L] = 1;$

- $\mathbf{I} \quad \mathbf{A}_{
 u}[\pm\infty] = 0 ext{ for } \nu > 1;$

$$\mathcal{A}_{
u}[-\infty] = (\infty)^{1-
u}$$
 for $u < 1$ i.e.,

 ${\cal A}_
u(Q^2 o 0)$ becomes Unbounded for u < 1

QFTHEP'2019 @Sochi, Russia

FAPT(Eucl): $\mathcal{A}_{\nu}[L]$ versus L

$$\mathcal{A}_{
u}[L] = rac{1}{L^{
u}} - rac{F(e^{-L},1-
u)}{\Gamma(
u)}$$

Fractional $\nu \in [2,3]$:

Comparison with $\bar{a}_{s}^{\nu}[L]$:

QFTHEP'2019 @Sochi, Russia

PT vs FAPT for partial TFF. Conclusion.

To hold the correspondence with PT asymptotics we put "calibrated FAPT" condition:

$$\mathcal{A}_{
u}(0) = \mathfrak{A}_{
u}(0) = 0$$
 for $0 <
u \leqslant 1$

QFTHEP'2019 @Sochi, Russia

 $\gamma(q^2\simeq 0)\gamma^*(Q^2)
ightarrow\pi^0$

Light Cone Sum Rules within FAPT, New prediction for the pion TFF

Ayala C. &M.S. &Stefanis N., PRD 98 (2018) 096017

QFTHEP'2019 @Sochi, Russia

The partial TFF_{LCSR}

 $Q^2 F_{\text{LCSR};0}^{\gamma \pi} (Q^2) =$ standard Born term +twist-4,6 + ...

$$N_{\mathsf{T}}\left\{ \int_{0}^{\bar{x}_{0}} \psi_{0}(x) \frac{dx}{\bar{x}} + \frac{Q^{2}}{m_{\rho}^{2}} \int_{\bar{x}_{0}}^{1} \exp\left(\frac{m_{\rho}^{2}}{M^{2}} - \frac{Q^{2}}{M^{2}} \frac{\bar{x}}{x}\right) \psi_{0}(x) \frac{dx}{x} + \mathsf{twist-4,6} + \left(\mathbb{A}_{1}(\mathbf{0}, s_{0}; x) \right) = \mathcal{T}^{(1)}(\mathbf{x}_{0}, \mathbf{x}) = \mathcal{T}^{(1)}(\mathbf{x}, \mathbf{x}) = \mathcal{T}^{(1)$$

$$\left(\frac{1}{x}\right) \otimes_{x} \mathcal{T}^{(1)}(x,y) \otimes_{y} \psi_{0}(y) + \frac{Q^{2}}{m_{\rho}^{2}} \int_{\bar{x}_{0}}^{1} \exp\left(\frac{m_{\rho}^{2}}{M^{2}} - \frac{Q^{2}}{M^{2}}\frac{\bar{x}}{x}\right) \frac{dx}{x} \Delta_{1}(\mathbf{0},\bar{x}) \mathcal{T}^{(1)}(\bar{x},y) \otimes \psi_{0}(y) + O(\mathbb{A}_{2}) \bigg\},$$

The partial TFF_{LCSR}

 $Q^2 F_{\text{LCSR};0}^{\gamma \pi} (Q^2) = |$ standard Born term +twist-4,6 | + ...

$$N_{\mathsf{T}} \left\{ \int_{0}^{\bar{x}_{0}} \psi_{0}(x) \frac{dx}{\bar{x}} + \frac{Q^{2}}{m_{\rho}^{2}} \int_{\bar{x}_{0}}^{1} \exp\left(\frac{m_{\rho}^{2}}{M^{2}} - \frac{Q^{2}}{M^{2}} \frac{\bar{x}}{x}\right) \psi_{0}(x) \frac{dx}{x} + \mathsf{twist-4,6} + \frac{Q^{2}}{M^{2}} \frac{\bar{x}}{x} + \mathsf{twist-4,6} \right\} + \frac{Q^{2}}{M^{2}} \frac{1}{M^{2}} \left(\frac{m_{\rho}^{2}}{M^{2}} - \frac{Q^{2}}{M^{2}} \frac{\bar{x}}{x}\right) \psi_{0}(x) \frac{dx}{x} + \mathsf{twist-4,6} + \frac{Q^{2}}{M^{2}} \frac{1}{M^{2}} \frac{1}{M^$$

$$\left(\frac{\mathbb{A}_{1}(\mathbf{0}, s_{\mathbf{0}}; \boldsymbol{x})}{\boldsymbol{x}}\right) \underset{x}{\otimes} \mathcal{T}^{(1)}(x, y) \underset{y}{\otimes} \psi_{0}(y) + \\ \frac{Q^{2}}{m_{\rho}^{2}} \int_{\bar{x}_{0}}^{1} \exp\left(\frac{m_{\rho}^{2}}{M^{2}} - \frac{Q^{2}}{M^{2}}\frac{\bar{x}}{x}\right) \frac{dx}{x} \boldsymbol{\Delta}_{1}(\mathbf{0}, \bar{\boldsymbol{x}}) \mathcal{T}^{(1)}(\bar{x}, y) \otimes \psi_{0}(y) + O(\mathbb{A}_{2}) \bigg\},$$

Specific couplings for the case of LCSR, $x_0 = s_0/(s_0 + Q^2)$, $\mathbb{A}_{\boldsymbol{\nu}}(\mathbf{0}, s_0; \boldsymbol{x}) = \theta (\boldsymbol{x} \ge x_0) [\mathcal{A}_{\boldsymbol{\nu}}(Q(\boldsymbol{x})) - \mathcal{A}_{\boldsymbol{\nu}}(0)] + \theta (\boldsymbol{x} < x_0) [\mathcal{I}_{\boldsymbol{\nu}}(s_0(\boldsymbol{x}), Q(\boldsymbol{x})) - \mathfrak{A}_{\boldsymbol{\nu}}(s_0(\boldsymbol{x}))] ,$ $\Delta_{\boldsymbol{\nu}}(\mathbf{0}, \boldsymbol{x}) = \mathbb{A}_{\boldsymbol{\nu}}(0; \boldsymbol{x}) - \mathbb{A}_{\boldsymbol{\nu}}(0, s_0; \boldsymbol{x}),$

$$s_0(x) = s_0 \bar{x} - Q^2 x; \ s_0(x_0) = 0$$

QFTHEP'2019 @Sochi, Russia

TFF_{LCSR} in FAPT vs the experimental data

 $F_{ t LCSR}^{\gamma\pi}\left(Q^{2}
ight) = F_{ t LCSR;0}^{\gamma\pi}\left(Q^{2}
ight) + \sum_{n=2,4} b_{n}(\mu^{2}) \; F_{ t LCSR;n}^{\gamma\pi}\left(Q^{2}
ight) +$ Tw-4,6

Green strip shows the theoretical uncertainties of $Q^2 F_{LCSR}^{\gamma\pi}(Q^2)$ at the BMS DA $\{1, b_2, b_4\}$ Ayala &M.S. &Stefanis PRD 98,096017 (2018)

QFTHEP'2019 @Sochi, Russia

TFF_{LCSR} in FAPT vs the experimental data

Black line&green strip around - FAPT predictions to $Q^2 F_{LCSR}^{\gamma\pi}$ Blue line - FOPT prediction at N²LO to $Q^2 F_{LCSR}^{\gamma\pi}$ The single fitted parameter is the scale of Tw-6 $\langle \bar{q}q \rangle^2$, taken at its high admissible bound (0.25)⁶ GeV².

QFTHEP'2019 @Sochi, Russia

CONCLUSIONS

- Fractional APT provides a natural tool to apply APT approach for renormalization group improved perturbative amplitudes.
- The applicability of the FAPT to exclusive processes demands new boundary conditions for the FAPT couplings, $\mathcal{A}_{\nu}(0) = \mathfrak{A}_{\nu}(0) = 0, \forall \nu$ as a "feedback"
- LCSRs augmented with RG summation of radiative corrections yield (with endpoint-suppressed BMS DA) transition FF with improved Q² behavior and extends the domain of QCD applicability below 1 GeV²
- This approach of LCSR with FAPT is best-suited for announced BESIII data with high precision and good describes them.

Generelized FAPT:

STORE

QFTHEP'2019 @Sochi, Russia

Analytic Perturbation Theory in QCD, Inclusive processes.

> "Take care of Principles and the Principles will take care of you"

D. Shirkov & I. Solovtsov, PRL79 (1997) 1209; Theor. Math. Phys. 150 (2007) 132

QFTHEP'2019 @Sochi, Russia

Different effective couplings in Euclidean, \mathcal{A}_n , and Minkowskian, \mathfrak{A}_n , regions

 $\overline{lpha}_s^n o \{\mathcal{A}_n,\mathfrak{A}_n\}$

- $\textbf{Minkowsk.:} \ q^2 = s, \ L_s = \ln{(s/\Lambda^2)}, \ a_s^n[L] \to \{\mathfrak{A}_n[L_s]\}_{n \in \mathbb{N}}$

- Euclid.: $-q^2 = Q^2, \ L = \ln{(Q^2/\Lambda^2)}, \ a_s^n[L] o \{\mathcal{A}_n[L]\}_{n \in \mathbb{N}}$
- Minkowsk.: $q^2 = s, \ L_s = \ln{(s/\Lambda^2)}, \ a_s^n[L] \to \{\mathfrak{A}_n[L_s]\}_{n \in \mathbb{N}}$

•
$$\mathcal{A}_n^{(l)} = \hat{D}[\mathfrak{A}_n^{(l)}] \equiv Q^2 \int_0^\infty \frac{\mathfrak{A}_n^{(l)}(\sigma)}{(\sigma + Q^2)^2} d\sigma$$

 $\mathfrak{A}_n^{(l)} = \hat{R}[\mathcal{A}_n^{(l)}] \equiv \int_{-s - i\varepsilon}^{-s + i\varepsilon} \frac{\mathcal{A}_n^{(l)}(\sigma)}{\sigma} d\sigma,$

QFTHEP'2019 @Sochi, Russia

- Euclid.: $-q^2 = Q^2, \ L = \ln{(Q^2/\Lambda^2)}, \ a_s^n[L] \to \{\mathcal{A}_n[L]\}_{n \in \mathbb{N}}$
- $\textbf{Minkowsk.:} \ q^2 = s, \ L_s = \ln{(s/\Lambda^2)}, \ a_s^n[L] \to \{\mathfrak{A}_n[L_s]\}_{n \in \mathbb{N}}$

•
$$\mathcal{A}_n^{(l)} = \hat{D}[\mathfrak{A}_n^{(l)}] \equiv Q^2 \int_0^\infty \frac{\mathfrak{A}_n^{(l)}(\sigma)}{(\sigma + Q^2)^2} d\sigma$$

 $\mathfrak{A}_n^{(l)} = \hat{R}[\mathcal{A}_n^{(l)}] \equiv \int_{-s - i\varepsilon}^{-s + i\varepsilon} \frac{\mathcal{A}_n^{(l)}(\sigma)}{\sigma} d\sigma,$

On the set of the pars $\{\mathcal{A}_n,\mathfrak{A}_n\}: \ \hat{D}\hat{R} = \hat{R}\hat{D} = 1$

QFTHEP'2019 @Sochi, Russia

New non-power perturbation theory [MS-scheme] – Analytic PT

• PT
$$\sum_{m} d_{m} a_{s}^{m}(Q^{2}) \Rightarrow \sum_{m} d_{m} \mathcal{A}_{m}(Q^{2})$$
 APT

New non-power perturbation theory [MS-scheme] – Analytic PT

• PT
$$\sum_{m} d_{m} a_{s}^{m}(Q^{2}) \Rightarrow \sum_{m} d_{m} \mathcal{A}_{m}(Q^{2})$$
 APT

• APT : $\mathcal{A}_n \cdot \mathcal{A}_m \neq \mathcal{A}_{m+n}$: No algebra

New non-power perturbation theory [MS-scheme] – Analytic PT

• PT
$$\sum_{m} d_{m} a_{s}^{m}(Q^{2}) \Rightarrow \sum_{m} d_{m} \mathcal{A}_{m}(Q^{2})$$
 APT
• APT: $\mathcal{A}_{n} \cdot \mathcal{A}_{m} \neq \mathcal{A}_{m+n}$: No algebra
• FAPT: concept generalization for $\forall \nu$ – real
 $\overline{\alpha}_{s}^{\nu} \rightarrow \{\mathcal{A}_{\nu}(Q^{2}), \mathfrak{A}_{\nu}(s)\}$

New non-power perturbation theory [MS-scheme] – Analytic PT

• PT
$$\sum_{m} d_{m} a_{s}^{m}(Q^{2}) \Rightarrow \sum_{m} d_{m} \mathcal{A}_{m}(Q^{2})$$
 APT
• APT: $\mathcal{A}_{n} \cdot \mathcal{A}_{m} \neq \mathcal{A}_{m+n}$: No algebra
• FAPT: concept generalization for $\forall \nu$ – real
 $\overline{\alpha}_{s}^{\nu} \rightarrow \{\mathcal{A}_{\nu}(Q^{2}), \mathfrak{A}_{\nu}(s)\}$

New functions $f(a_s): (a_s)^{\nu}, (a_s)^{\nu} \ln(a_s), (a_s)^{\nu} L^m, e^{-a_s}, ...$

New non-power perturbation theory [MS-scheme] – Analytic PT

• PT
$$\sum_{m} d_{m} a_{s}^{m}(Q^{2}) \Rightarrow \sum_{m} d_{m} \mathcal{A}_{m}(Q^{2})$$
 APT
• APT: $\mathcal{A}_{n} \cdot \mathcal{A}_{m} \neq \mathcal{A}_{m+n}$: No algebra
• FAPT: concept generalization for $\forall \nu$ – real
 $\overline{\alpha}_{s}^{\nu} \rightarrow \{\mathcal{A}_{\nu}(Q^{2}), \mathfrak{A}_{\nu}(s)\}$

New functions $f(a_s): (a_s)^{\nu}, (a_s)^{\nu} \ln(a_s), (a_s)^{\nu} L^m, e^{-a_s}, ...$

FAPT:

Karanikas A.& Stefanis N., PLB504 (2001), 225; 636 (2006) 330; Bakulev A. & M.S. & Stefanis N., PRD72 (2005) 074014; PRD75 (2007) 056005; JHEP06 (2010) 085 G. Cvetic & A. Kotikov, J.Phys.G39 (2012) 065005

Spectral representation

By analytization we mean "Källen–Lehmann" representation

$$\left[f(Q^2)
ight]_{\mathrm{an}} = \int_0^\infty rac{
ho_f(\sigma)}{\sigma+Q^2-i\epsilon}\,d\sigma$$

the main hero is the spectral density $\rho_n(\sigma) = \frac{\mathsf{Im}}{\pi} \left[a_s^n(-\sigma) \right] \beta_0^n$:

$$\begin{aligned} \mathcal{A}_n[L] = & \int_0^\infty \frac{\rho_n(\sigma)}{\sigma + Q^2} \, d\sigma \stackrel{1l}{=} \frac{1}{(n-1)!} \left(-\frac{d}{dL} \right)^{n-1} \mathcal{A}_1[L] \\ \mathfrak{A}_n[L_s] = & \int_s^\infty \frac{\rho_n(\sigma)}{\sigma} \, d\sigma \stackrel{1l}{=} \frac{1}{(n-1)!} \left(-\frac{d}{dL_s} \right)^{n-1} \mathfrak{A}_1[L_s] \\ & a_s^n[L] \stackrel{1l}{=} \frac{1}{(n-1)!} \left(-\frac{d}{dL} \right)^{n-1} a_s[L] \end{aligned}$$

Inequality: $a_s^n[L] \ge (\mathcal{A}_n[L], \mathfrak{A}_n[L]) \xrightarrow{L \to \infty} a_s^n[L]$

QFTHEP'2019 @Sochi, Russia

FAPT(M): Properties of $\mathfrak{A}_{\nu}[L]$

Now, Minkowskian coupling (L = L(s)) is elementary function:

$$\mathfrak{A}_{\nu}[L] = rac{\sin\left[(
u-1) \arccos\left(L/\sqrt{\pi^2+L^2}
ight)
ight]}{\pi(
u-1)\left(\pi^2+L^2
ight)^{(
u-1)/2}}$$

FAPT(M): Properties of $\mathfrak{A}_{\nu}[L]$

Now, Minkowskian coupling (L = L(s)) is elementary function:

$$\mathfrak{A}_{
u}[L] = rac{\mathrm{sin}\left[(
u-1)\mathrm{arccos}\left(L/\sqrt{\pi^2+L^2}
ight)
ight]}{\pi(
u-1)\left(\pi^2+L^2
ight)^{(
u-1)/2}}$$

Properties:

The charge \mathfrak{A}_{ν} is bounded for $\nu \ge 1$,

- $\mathfrak{A}_0[L] = 1;$
- $\ \, \mathfrak{A}_{-1}[L] = L; \mathfrak{A}_{-2}[L] = L^2 \frac{\pi^2}{3}, \ \ldots ;$
- ${} { \mathfrak{A}}_m[L]=(-1)^m{} {\mathfrak{A}}_m[-L] ext{ for } m\geq 2\,,\ m\in\mathbb{N};$
- $\mathfrak{A}_{\nu}[\pm\infty] = 0$ for $\nu > 1$

FAPT(M): Properties of $\mathfrak{A}_{\nu}[L]$

Now, Minkowskian coupling (L = L(s)) is elementary function:

$$\mathfrak{A}_{
u}[L] = rac{\mathrm{sin}\left[(
u-1)\mathrm{arccos}\left(L/\sqrt{\pi^2+L^2}
ight)
ight]}{\pi(
u-1)\left(\pi^2+L^2
ight)^{(
u-1)/2}}$$

Properties:

The charge \mathfrak{A}_{ν} is bounded for $\nu \ge 1$,

- $\ \, \mathfrak{A}_{-1}[L] = L; \mathfrak{A}_{-2}[L] = L^2 \frac{\pi^2}{3}, \ \ldots ;$
- $\mathfrak{A}_{\nu}[\pm\infty] = 0$ for $\nu > 1$

$$\mathfrak{A}_{\nu}[-\infty] = (\infty^2 + \pi^2)^{(1-\nu)/2}$$
 for $\nu < 1$
i.e., $\mathfrak{A}_{\nu}(Q^2 \to 0)$ becomes Unbounded

QFTHEP'2019 @Sochi, Russia

FAPT(M): Graphics of $\mathfrak{A}_{\nu}[L]$ vs. L

$$\mathfrak{A}_{\nu}[L] = \frac{\sin\left[(\nu-1) \arccos\left(L/\sqrt{\pi^2 + L^2}\right)\right]}{\pi(\nu-1) \left(\pi^2 + L^2\right)^{(\nu-1)/2}}$$

Compare with graphics in Minkowskian region :

QFTHEP'2019 @Sochi, Russia

Equivalence CIPT and APT for R(s)

QFTHEP'2019 @Sochi, Russia

Comparison of PT, APT, and FAPT

Theory	PT	APT	FAPT
Set	$\left\{a^{oldsymbol{ u}} ight\}_{oldsymbol{ u}\in\mathbb{R}}$	$ig\{\mathcal{A}_m,\mathfrak{A}_mig\}_{m\in\mathbb{N}}$	$ig\{\mathcal{A}_ u,\mathfrak{A}_ uig\}_{ u\in\mathbb{R}}$
Series	$\sum\limits_m f_ma^{m+ u}$	$\sum\limits_m f_m \mathcal{A}_m$	$\sum\limits_m f_m \mathcal{A}_{m+ u}$
Inv. powers	$(a[L])^{-m}$		$\mathcal{A}_{-m}[L] = L^m$
Products	$a^{\mu}a^{ u}=a^{\mu+ u}$,	
Index deriv.	$a^{m u} { m ln}^k a$		$\mathcal{D}^k\mathcal{A}_ u$
Logarithms	$a^{ u}L^k$		$\mathcal{A}_{ u-k}$
Resummation		$\langle\langle \mathcal{A}_1[L-t] angle angle_{P(t)}$	$\langle\langle \mathcal{A}_{1+ u}[L-t] angle angle_{P_ u(t)}$

QFTHEP'2019 @Sochi, Russia

New Expansion charge $\mathcal{I}(y, x)$

$$egin{aligned} \mathcal{I}_
u(y,x) \stackrel{def}{=} \int_y^\infty rac{d\sigma}{\sigma+x}
ho_
u^{(l)}(\sigma) \ \mathcal{A}_
u(x) &= \mathcal{I}_
u(y o 0,x), \ \mathfrak{A}_
u(Y) &= \mathcal{I}_
u(y,x o 0), \ \mathcal{A}_1(0) = \mathfrak{A}_1(0) \end{aligned}$$

PT vs FAPT for partial TFF

To hold the correspondence with PT asymptotics

QFTHEP'2019 @Sochi, Russia

"Distorting mirror" symmetry

The 2D projections of the 3D plots of \mathcal{I}_{ν} . The couplings $\mathcal{I}_{\nu}(y, \text{fixed}), \mathcal{I}_{\nu}(\text{fixed}, x)$ are taken for different values of the index $\nu = 1/2, 1, 3/2, 2$.

QFTHEP'2019 @Sochi, Russia