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Rare B-decays induced by flavour-changing neutral currents (FCNC) is one of the promising
candidates for probing physics beyond the Standard model. However, for identifying potential
new physics from the data, reliable control over QCD contributions is necessary. I focus on one
of such QCD contributions - the charming loops that provide difficulties in disentangling new
physics and discuss the possibility to gain control over them.
1. Motivation: tensions with SM predictions in FCNC b→ s, d decays
2. Heff for b→ s, d and the ⟨γl+l−|Heff |B⟩ amplitude
3. Charming loops
4. Conclusions and outlook
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FCNC b→ s and b→ d transitions do not occur at the tree level in SM and proceed via loops. As
the result, BRs of FCNC decays are small; on the other hand, new particles may show up virtually
in the loops. Therefore, FCNC decays are most popular candidates for indirect search of physics
BSM.
Tensions between SM predictions and observations in FCNC b→ s transitions:

In SL decays:
• RK =

B(B+→K+µ+µ−)
B(B+→K+e+e−) = 0.745+0.090

−0.074(stat) ± 0.036(syst) (2.6σ) range of q2 = [1, 6] GeV2;
•
B(B+ → K+µ+µ−)SM = (1.75+0.60

−0.29) × 10−7;
B(B+ → K+µ+µ−)exp = (1.19 ± 0.03 ± 0.06) × 10−7 range of q2 = [1, 6] GeV2.
•
RK∗0 = 0.69 + 0.11

− 0.07 (stat) ± 0.05 (syst) for , q2 = [1, 6] GeV2

• Same for B(B+ → ϕµ+µ−) (> 3σ)

In leptonic decays:

• B(B0
s→µ+µ−)exp

B(B0
s→µ+µ−)SM

= 0.76+0.20
−0.18 (1.2σ)
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Effective Hamiltonian for FCNC B-decays

At the tree level, the SM allows the following transitions between quarks:
• charged current transitions b→ W−q, q = u, c, t
• neutral current transitions: b→ bγ, b→ bZ0.
FCNC transitions b→ s, d are forbidden in SM at the tree level, and proceed via loops (boxes and
penguins).
• Example: b→ sγ vertex

tsus cs
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V V V V V

= 0+ +V V
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VV V V* * *
tbub

CKM Unitarity:

b s
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W b sW
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Important feature: due to CKM unitarity, leading UV divergences cancel (GIM mechanism).
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• Example: b→ sl+l− vertex
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In the loops heavy and light particles propagate. For the description of B-decays, much heavier
particles W, Z, t may be “integrated out”. Example for b→ sγ:

 

7γtb O
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b sW

t t
st

The contribution of heavy degrees of freedom is described in terms of the effective Hamiltonian

Hb→s
eff =

GF√
2

VtbV∗ts
∑

i

Ci(µ)Oi(µ),

Oi(µ) - operators; Ci(µ) - WC, µ0 = 5 GeV: C7(µ0) = 0.312, C9V(µ0) = −4.21, C10A(µ0) = 4.64.
Contributions of top and W toHeff:

Hb→sℓ+ℓ−
eff =

GF√
2

αem

2π
VtbV∗ts[ − 2imb

C7γ(µ)
q2 · s̄σµνqν (1 + γ5) b · ℓ̄γµℓ +

+ C9V(µ) · s̄γµ (1 − γ5) b · ℓ̄γµℓ +C10A(µ) · s̄γµ (1 − γ5) b · ℓ̄γµγ5ℓ]
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Don’t forget:
b, c, u, d, s-quarks are dynamical!
To calculate any amplitude of B-decay, one needs to calculate the amplitude of Heff (describes top
and W, and Z) and add contributions of loops with dynamical light degrees of freedom (masses
≪ MW).
In the following I concentrate on B→ γl+l− decays.
⟨γl+l−|Heff |B⟩ + add contributions of c and u quarks.
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Top-quark contributions

We need to calculate ⟨γl+l−|Heff |B⟩ with

Hb→sℓ+ℓ−
eff =

GF√
2

αem

2π
VtbV∗ts[ − 2imb

C7γ(µ)
q2 · s̄σµνqν (1 + γ5) b · ℓ̄γµℓ +

+ C9V(µ) · s̄γµ (1 − γ5) b · ℓ̄γµℓ +C10A(µ) · s̄γµ (1 − γ5) b · ℓ̄γµγ5ℓ]

The ⟨γl+l−|Heff |B⟩ amplitude can be parameterized via form factors:

⟨γ(k, ϵ)|s̄γµγ5b|Bs(p)⟩ = i e ϵ∗α
(
gµα pk − pαkµ

) FA(k′2, k2)
MB

,

⟨γ(k, ϵ)|s̄γµb|Bs(p)⟩ = e ϵ∗α ϵµαξηpξkη
FV(k′2, k2)

MB
,

⟨γ(k, ϵ)|s̄σµνγ5b|Bs(p)⟩ (p − k)ν = e ϵ∗α
[
gµα pk − pαkµ

]
FT A(k′2, k2),

⟨γ(k, ϵ)|s̄σµνb|Bs(p)⟩ (p − k)ν = i e ϵ∗αϵµαξηpξkη FTV(k′2, k2).

k′ momentum emitted from the FCNC vertex b→ s (k′2 - first variable of the ffs)
k momentum emitted from the e.-m. vertex (k2 - second variable of the ffs)

Electromagnetic gauge invariance imposes rigorous constraints on the form factors:

FT A(0, q2) = FTV(0, q2), FT A(0, 0) = FTV(0, 0)

but
FT A(q2, 0) , FTV(q2, 0).
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• Diagrams with real photon emission from valence quarks are described via F(q2, 0)
(no poles in the range 0 < q2 < M2

B: poles in q2 appear at q2 = M2
R):
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• Diagrams with virtual photon emission from valence quarks are described by F(0, q2)
(in the first diagram pole in the physical q2-range):
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• Bremsstrahlung (∼ C10A)
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Dashed blob: penguin operator O7γ; full blob: four-fermion operators O9V and O10A.
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Form factor calculation

The methods are:

• Lattice QCD: for B→ K,K∗ form factors at large q2; however in practice very difficult for B→ γ

form factors

• QCD sum rules (light-cone sum rules): at small q2 (large recoil).
Also LEET (large energy effective theory) gives constraints on the behavior of the form factors in
this region. E.g. for B→ γ form factors F(E) ∼ 1/E.

• Phenomenological relativistic quark models in the full range of q2, however, difficult to gain
control over systematic uncertainties.
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A schematic calculation of some of the contributions in “QCD”:

F(q2, q′2) =
∫

dxeiqx⟨0|T (b̄(x)s(x), s̄(0)s(0))|Bs(p)⟩ =
∫

dxeiqxdke−ikx⟨0|b̄(x)s(0)|Bs(p)⟩
m2

s − k2 − i0
.

p = q + q′ and p2 = M2
B. B-meson 2DA depends on 2 variables x2 and xp

⟨0|b̄(x)s(0)|Bs(p)⟩ =
1∫

0

dξe−ipxξ
{
ϕ0(ξ) + x2ϕ1(ξ) + . . .

}
• The LC contribution x2 = 0 is easy

F(q2, q′2) =
∫

dxeiqxϕ0(ξ)dξe−iξpxe−ikxdk
m2

s − k2 − i0
=

1∫
0

dξ ϕ0(ξ)
m2

s − (q − ξp)2

Taking into account that (p − q)2 = q′2, and thus 2qp = p2 − q2 − q′2, we obtain
k2 = q2(1− ξ)− ξ(1− ξ)M2

B + q′2ξ. Important: ϕ0(ξ) is peaked near ξ ∼ ΛQCD/mb, so k2 ∼ −ΛQCDmb.
The propagating quark is highly virtual, so perturbative expression for its propagator is ok.

F(q2, q′2) =

1∫
0

ϕ0(ξ)dξ

m2
s −

(
q2(1 − ξ) − ξ(1 − ξ)M2

B + q′2ξ
)

• x2 terms in 2DA: write xα = −i∂αeikx, parts integration. x2 → ΛQCD/mb compared to LC term.

Contributions to F(q2, q′2) from powers of x2 in 2DA are suppressed.



10

• Form factors F(q2, 0):
(i) Single-pole suggested by LEET:

Fi(q2, 0) =
Fi(0)

1 − q2/M2
R

.

(ii) Modified pole; parametrizes our results in a broader range 0 < q2 < 20 GeV2

Fi(q2, 0) =
Fi(0)

(1 − q2/M2
R)(1 − σ1q2/M2

R − σ2(q2/M2
R)2)
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• Form factors F(0, q2):
For subprocesses with resonances in the physical q2-range, we have calculated form factors at
q2 below the resonances via dispersion approach. For larger values of q2 we make use of the
vector-meson dominance

F(0, q2) = F(0, 0) + q2 fV/MV

M2
V − q2 − iΓV MV

.
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Charm- loop contributions

Illustration: B→ Kl+l− decay 0 <
√

s < (MB − MK), s - momentum squared of l+l− pair.
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• Charmonia appear in the kinematical decay region. In the charmonia region, charm contribu-
tion dynamically enhanced and dominates.

• Far from the charmonia region, top dominates (black dashed). Still, to study possible NP effects,
Need to gain theoretical control over charm contributions
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Charm generates two different topologies: (a) penguin topology (b) weak annihilation topology
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• Account of hard gluon exchanges lead to the four-quark operators

Hb→sc̄c
eff = −GF√

2
VcbV∗cs {C1(µ)O1 +C2(µ)O2}

with
O1 = s̄ jγµ(1 − γ5)ci c̄iγµ(1 − γ5)b j, O2 = s̄iγµ(1 − γ5)ci c̄ jγµ(1 − γ5)b j,

and the similar terms with c→ u (i, j color indices). The SM Wilson coefficients at the scale µ0 = 5
GeV [corresponding to C2(MW) = −1]: C1(µ0) = 0.241, C2(µ0) = −1.1.
These operators lead to factorizable contributions to the amplitudes of exclusive FCNC B-decays.

• Soft gluon exchanges between the charm-quark loop and the B-meson loop lead to
nonfactorizable contributions to the amplitudes.
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• Nonfactorizable charm contributions are comparable with factorizable contributions

How do we know that? Compare charmonia in l+l−-annihilation and in FCNC B-decays:
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The patterns of charmonia in charm contribution to vacuum polarization (left) and in B→ Kl+l−

(right) are different. The difference is due to nonfactorizable contributions.
• In some cases, factorizable charm contribution vanishes and thus only nonfactorizable charm
contributes (e.g in B→ K∗γ)

We need formalism to calculate nonfactorizable charm effects in QCD.
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Factorizable part

c c

P

q

P´s

b s
k

Product of B→ γ form factor and the charm polarization function.
At q2 ≪ 4m2

c, the charm loop may be calculated in pQCD, and has been measured in a broad
range of q2.
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Nonfactorizable part (illustration for scalar “quarks” and scalar “gluon”)

pλ

ω

q

b s

x=0

z

y
p´

s
p

x

c

c

c

p
k

A(q, p) =
1

(2π)8

∫
dk

m2
s − k2

∫
dye−i(k−p′)y

∫
dxe−iκxdκ Γcc(κ, q) ⟨0|s̄(y)G(x)b(0)|Bs(p)⟩.

• The 3DA depends on 5 variables xp, yp, x2, y2, xy (p2 = M2
B) and may be parametrized as follows:

⟨0|s†(y)G(x)b(0)|Bs(p)⟩ =
∫

dλe−iλyp
∫

dωe−iωxpΦ(ω, λ)
[
1 + O

(
Λ2

QCDx2,Λ2
QCDy2,Λ2

QCD(x − y)2
)]
.

Φ(ω, λ) is peaked at λ, ω ∼ ΛQCD/mb [b-quark carries the major part of the B-meson momentum].
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• Charm-quark loop:

In the charm triangle diagram Γcc(κ, q), for q2 ≪ 4m2
c, all external virtualities

κ2 = ω2M2
B = O(Λ2

QCD) and q′2 = (ωp − q)2 ∼ −ωM2
B are far below the c̄c thresholds,

Charm loop is perturbative as soon as q2 < 4m2
c.

• s-quark propagator

m2
s − (λp − p′)2 = m2

s − λq2 + (1 − λ)(λM2
B − p′2) ∼ −ΛQCDmb.

s-quark is highly virtual

• The contribution of the LC part of the B-meson 3DA Φ(ω, λ) to A(q, p) is easy to calculate:

A(q, p) =
1

(2π)8

∫
dk

m2
s − k2

∫
dye−i(k−p′)y

∫
dxe−iκxdκ Γcc(κ, q)

∫
dλe−iλyp

∫
dωe−iωxpΦ(ω, λ)∫

dx→ δ(κ + ωp),
∫

dy→ δ(k + λp − p′).

and integrate over κ and k we get

A(q, p) =
∫ ∞

0
dλ

∫ ∞

0
dωΦ(λ, ω)Γcc (−ωp, q)

1
m2

s − (λp − p′)2 .
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• Contributions of x2, y2, xy-terms in 3DA to the amplitude A(q, p) relative to the Φ(ω, λ) term:

Λ2
QCDy2 ∼

ΛQCD

mb
, Λ2

QCDx2 ∼
Λ3

QCDmb

m4
c

, Λ2
QCDxy ∼

mbΛQCD

m2
c

.

Summary for nonfactorizable corrections:
Nonfactorizable corrections are expressed via

⟨0|s†(y)G(x)b(0)|Bs(p)⟩ =
∫

dλe−iλyp
∫

dωe−iωxpΦ(ω, λ)
[
1 + O

(
Λ2

QCDx2,Λ2
QCDy2,Λ2

QCD(x − y)2
)]
,

The new recent result is that the knowledge of its functional dependence on (x− y)2 is essential for
a proper resummation of large ΛQCDmb/m2

c corrections.

Previosuly, it way believed that the 3DA with aligned arguments
xµ = uyµ, on the LC x2 = 0, y2 = 0 and (x − y)2 = 0
is sufficient to calculate nonfactorizabe contributions.
One needs the off-LC contributions. A challenge for future calculations
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Numerical results for q2 < 4m2
c:

• B→ K∗γ

Is described via single number T1(q2 = 0).
Charm-loop correction is purely nonfactorizable (factorizable part vanished for q2 = 0).
C7γ(5 GeV) = 0.312, δC7γ(5 GeV) = 0.012+0.016

−0.009

• B→ Kl+l− at the level of 5% at q2 = 3 − 4 GeV2

• B→ K∗l+l− at the level of 10-15% at q2 = 3 − 4 GeV2

We need a wide range 0 < q2 < M2
B, including the region of charmonium resonances. QCD-based

calculation cannot be applied at q2 in the resonance region, where nonperturbative approaches
based on hadron degrees of freedom are necessary,
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Charm-loop contributions to the Bs → γl+l− amplitude may be parametrized as follows:

Hµα(k′, k) = −GF√
2

VcbV∗cse
[
ϵµαk′kHV − i

(
gαµ kk′ − k′αkµ

)
HA − i

(
k′α −

kk′

k2 kα

) (
kµ −

kk′

k′2
k′µ

)
H3

]
,

with the invariant form factors Hi depending on two variables, Hi(k′2, k2). At q2 < 4m2
c one calcu-

lates nonfactrizable contributions to these functions via B-meson 3DA. To go to larger q2 it was
proposed to use dispersion representation in q2 [Khodjamirian et al, 2010]

Hi(q2) = ai + biq2 + (q2)2

 ∑
ψ=J/ψ,ψ′

fψAi
Bψγ

m3
ψ(m2

ψ − q2 − imψΓψ)
+ hi(q2)

 , i = A,V, 3

where ai and bi are the (unknown) subtraction constants and the functions hi(q2) describe the
hadron continuum including the broad charmonium states lying above the DD threshold.
The amplitudes |Ai

Bψγ| may be taken from the data, but different resonances may have nonzero
relative phases generated by nonfactorizable corrections.
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Numerical results

Differential distributions in B→ γl+l− vs q2[GeV2].
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Light vector resonances and charmonia have completely different origins: Light vector reso-
nances appear as resonance contribution in the same quark loop as B-meson (i.e. they contain
one valence quark). Charmonia emerge in a different quark loop (after going to effective EW
theory).
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Forward-backward asymmetry

Bs → µ+µ−γ:
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Bd → µ+µ−γ:
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Conclusions and outlook

• FCNC B-decays remain a promising candidate for indirect NP searches. A few tensions with the
SM predictions (B-physics anomalies) have been observed experimentally.
• Charm provides sizeable contributions to the amplitudes of FCNC decays. In the charmonia
regions charm contributions dominate the amplitudes of FCNC B-decays. Moreover, nonfactor-
izable charm effects are comparable in size with factorizable charm effects.
• What happens with the charm contributions beyond the resonance regions, is a serious open
theoretical problem in FCNC B-decays. According to some estimates, charm contributes to the
differential distributions, including the asymmetries, at the level of 5-10% at q2 also far beyond
J/ψ, ψ′.
• At q2 ≪ 4m2

c, a consistent description of nonfactorizable charming loops requires the knowledge
of off-LC 3DAa.

• If charm effects are controlled well, the distributions (in particular, AFB) potentially have the
sensitivity to the precise values of the Wilson coefficients, i.e. have sensitivity to new physics.
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• Can we use “duality” to predict charm contribution in exclusive FCNC B-decays?
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• Including Lorentz structures in the B-meson three-particle DA:
In QCD, new functions emerge when one wants to generalize terms of the following type:

⟨0|s̄(x)Gαβ(ux)b(0)|B(v)⟩ =
∫

dλe−iλxp
∫

dωe−iωuxp
[xαvβ

xv
−

xβvα
xv

]
Φ(λ, ω). (1)

How to generalize them for a non-aligned case? Obviously, new structures and new amplitudes
arise:

⟨0|s̄(y)Gαβ(x)b(0)|B(v)⟩ =
∫

dλe−iλxv
∫

dωe−iωyv

×1
2

[(
xαvβ
xv
−

xβvα
xv
+

yαvβ
yv
−

yβvα
yv

)
ΦS (λ, ω) +

(
xαvβ
xv
−

xβvα
xv
−

yαvβ
yv
+

yβvα
yv

)
ΦA(λ, ω)

]
. (2)

ΦS = Φ from (1), whereas ΦA is new. If the contributions induced by ΦA are not suppressed, a
consistent calculation of the decay amplitude A needs further inputs.
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• Local vs light-cone OPE
Local OPE corresponds to power expansion of G(ux): G(ux) = G(0) + uxα∂αG + . . ..
1. The leading contribution comes from G(0) term:

⟨0|s̄(y)G(0)b(0)|B(p)⟩|x=0 =

∫
dλe−iλyp

∫
dω

[
Φ(λ, ω) + O(y2)

]
. (3)

2. Let us consider the contribution of xα∂αG(0).
• The xα term can be generated by ∂αeiqx and after taking the integrals leads to qα

m2
c
.

• The ∂αG(0) term reads

∂

∂xα
⟨0|s̄(y)G(ux)b(0)|B(p)⟩|x=0 = −iupα

∫
dλe−iλyp

∫
dωωΦ(λ, ω) +C2ΛQCDxα

= C1pα
ΛQCD

mb
+C2ΛQCDxα (4)

The term C2 arises when the derivative acts on x2 and xy terms in the full off-LC 3DA.
3. The leading part in the ratio of the ∂αG(0) over the G(0) contributions to the amplitude arises
when qα contracts with the term ∼ pα and reads

qpΛQCD

mbm2
c
∼

MBΛQCD

m2
c
∼ 1. (5)

For the realistic case of c− and b-quarks, the “suppression” factor is around 1. So no real hi-
erarchy of the contributions within the local OPE. Summation is necessary, this is done by LC
OPE.


