# MSSM scenarios with a light CP-odd Higgs boson

# Elena Fedotova in collaboration with M.N. Dubinin

SINP MSU

## QFTHEP-2019

September 25, 2019 Sochi

## Introduction

BSM: many reasons but no direct evidence has yet been found at the LHC SUSY, many free parameters (i.e. infinite parameter sets)  $\rightarrow$  benchmark scenarios or BPs for the LHC searches

Though experimental information puts strong indirect constraints on BSM physics, new data are needed to constrain parameter space

Some hints exist

#### CMS $^2$

$$- pp \rightarrow bj\mu^+\mu^-$$

- $\sqrt{s}$ = 8 and 13 TeV
- 19.7 and 35.9 fb<sup>-1</sup>
- $m_{\mu\mu} \approx 28 \text{ GeV}, \Gamma \approx 1.9 \text{ GeV}$

ATLAS<sup>1</sup> no excess ALEPH (LEP)

- $Z \rightarrow b \overline{b} \mu \mu$
- $m_{\mu\mu} = 30.40 \pm 0.46 \text{ GeV}$
- $-2.6\sigma$   $(5\sigma)$





 $\rm ATLAS^1,\, CMS^2,\, LHCb^3$  and  $\rm LEP^4$  do not exclude the existence of light (pseudo)scalar bosons

Such an excess could

- explain the deviation of the measured  $(g-2)_{\mu} \ ^{5}$  ,
- be a CP-odd Higgs boson of the  $\rm NMSSM^6$

The possibility of the MSSM CP-odd Higgs boson is excluded in MSSM <u>benchmark scenarios</u> exploited in LHC searches (the SM-like Higgs is in decoupling limit, i.e.  $m_h \ll m_{H,A,H^{\pm}}$ ) but at the low scale the MSSM is effective 2HDM, so non-renormalizable operators should be included

Let us discuss the possibility of identification the excess as a CP-odd Higgs boson in MSSM extended by dimension-six operators

Elena Fedotova in collaboration with M.N. Dubinin 3/1

<sup>&</sup>lt;sup>1</sup>ATLAS-CONF-2019-036, JINST 3 (2008) S08003

<sup>&</sup>lt;sup>2</sup>JHEP 11 (2018) 161, arXiv: 1808.01890[hep-ex], JINST 3 (2008) S08004 <sup>3</sup>JINST 3 (2008) S08005

<sup>&</sup>lt;sup>4</sup>Nucl. Instrum. Meth. A294 (1990) 121

<sup>&</sup>lt;sup>5</sup>Godunov, Novikov, Vysotsky, Zhemchugov, JETP Lett. 109, 358 (2019)

<sup>&</sup>lt;sup>6</sup>Beskidt, Boer, Kazakov, Phys. Lett. B 782, 69 (2018)

$$U_{\rm eff} = U + U^{(6)} + U^{(8)} + \dots$$
(1)

$$U = -\mu_1^2 (\Phi_1^{\dagger} \Phi_1) - \mu_2^2 (\Phi_2^{\dagger} \Phi_2) - [\mu_{12}^2 (\Phi_1^{\dagger} \Phi_2) + h.c.]$$
(2)

- +  $\lambda_1 (\Phi_1^{\dagger} \Phi_1)^2 + \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1)$
- +  $[\lambda_5/2(\Phi_1^{\dagger}\Phi_2)(\Phi_1^{\dagger}\Phi_2) + \lambda_6(\Phi_1^{\dagger}\Phi_1)(\Phi_1^{\dagger}\Phi_2) + \lambda_7(\Phi_2^{\dagger}\Phi_2)(\Phi_1^{\dagger}\Phi_2) + h.c.]$

$$U^{(6)} = \kappa_1 (\Phi_1^{\dagger} \Phi_1)^3 + \kappa_2 (\Phi_2^{\dagger} \Phi_2)^3 + \kappa_3 (\Phi_1^{\dagger} \Phi_1)^2 (\Phi_2^{\dagger} \Phi_2) + \kappa_4 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2)^2 + \\ + \kappa_5 (\Phi_1^{\dagger} \Phi_1) (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + \kappa_6 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \\ + [\kappa_7 (\Phi_1^{\dagger} \Phi_2)^3 + \kappa_8 (\Phi_1^{\dagger} \Phi_1)^2 (\Phi_1^{\dagger} \Phi_2) + \kappa_9 (\Phi_1^{\dagger} \Phi_1) (\Phi_1^{\dagger} \Phi_2)^2 + \\ + \kappa_{10} (\Phi_1^{\dagger} \Phi_2)^2 (\Phi_2^{\dagger} \Phi_2) + \kappa_{11} (\Phi_1^{\dagger} \Phi_2)^2 (\Phi_2^{\dagger} \Phi_1) + \kappa_{12} (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_2)^2 + \\ + \kappa_{13} (\Phi_1^{\dagger} \Phi_1) (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_2) + h.c.]$$

$$U_{\rm eff} = U + U^{(6)} + U^{(8)} + \dots$$
 (1)

$$U = -\mu_1^2 (\Phi_1^{\dagger} \Phi_1) - \mu_2^2 (\Phi_2^{\dagger} \Phi_2) - [\mu_{12}^2 (\Phi_1^{\dagger} \Phi_2) + h.c.]$$
(2)  
+  $\lambda_1 (\Phi_1^{\dagger} \Phi_1)^2 + \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1)$   
+  $[\lambda_5/2 (\Phi_1^{\dagger} \Phi_2) (\Phi_1^{\dagger} \Phi_2) + \lambda_6 (\Phi_1^{\dagger} \Phi_1) (\Phi_1^{\dagger} \Phi_2) + \lambda_7 (\Phi_2^{\dagger} \Phi_2) (\Phi_1^{\dagger} \Phi_2) + h.c.]$ 

 $U^{(6)} = \kappa_1 (\Phi_1^{\dagger} \Phi_1)^3 + \kappa_2 (\Phi_2^{\dagger} \Phi_2)^3 + \kappa_3 (\Phi_1^{\dagger} \Phi_1)^2 (\Phi_2^{\dagger} \Phi_2) + \kappa_4 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2)^2 + \\ + \kappa_5 (\Phi_1^{\dagger} \Phi_1) (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + \kappa_6 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \\ + [\kappa_7 (\Phi_1^{\dagger} \Phi_2)^3 + \kappa_8 (\Phi_1^{\dagger} \Phi_1)^2 (\Phi_1^{\dagger} \Phi_2) + \kappa_9 (\Phi_1^{\dagger} \Phi_1) (\Phi_1^{\dagger} \Phi_2)^2 + \\ + \kappa_{10} (\Phi_1^{\dagger} \Phi_2)^2 (\Phi_2^{\dagger} \Phi_2) + \kappa_{11} (\Phi_1^{\dagger} \Phi_2)^2 (\Phi_2^{\dagger} \Phi_1) + \kappa_{12} (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_2)^2 + \\ + \kappa_{13} (\Phi_1^{\dagger} \Phi_1) (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_2) + h.c.]$ 

$$U_{\rm eff} = U + U^{(6)} + U^{(8)} + \dots$$
 (1)

$$U = -\mu_1^2 (\Phi_1^{\dagger} \Phi_1) - \mu_2^2 (\Phi_2^{\dagger} \Phi_2) - [\mu_{12}^2 (\Phi_1^{\dagger} \Phi_2) + h.c.]$$
(2)  
+  $\lambda_1 (\Phi_1^{\dagger} \Phi_1)^2 + \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1)$   
+  $[\lambda_5/2 (\Phi_1^{\dagger} \Phi_2) (\Phi_1^{\dagger} \Phi_2) + \lambda_6 (\Phi_1^{\dagger} \Phi_1) (\Phi_1^{\dagger} \Phi_2) + \lambda_7 (\Phi_2^{\dagger} \Phi_2) (\Phi_1^{\dagger} \Phi_2) + h.c.]$ 

$$U^{(6)} = \kappa_1 (\Phi_1^{\dagger} \Phi_1)^3 + \kappa_2 (\Phi_2^{\dagger} \Phi_2)^3 + \kappa_3 (\Phi_1^{\dagger} \Phi_1)^2 (\Phi_2^{\dagger} \Phi_2) + \kappa_4 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2)^2 + \\ + \kappa_5 (\Phi_1^{\dagger} \Phi_1) (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + \kappa_6 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \\ + [\kappa_7 (\Phi_1^{\dagger} \Phi_2)^3 + \kappa_8 (\Phi_1^{\dagger} \Phi_1)^2 (\Phi_1^{\dagger} \Phi_2) + \kappa_9 (\Phi_1^{\dagger} \Phi_1) (\Phi_1^{\dagger} \Phi_2)^2 + \\ + \kappa_{10} (\Phi_1^{\dagger} \Phi_2)^2 (\Phi_2^{\dagger} \Phi_2) + \kappa_{11} (\Phi_1^{\dagger} \Phi_2)^2 (\Phi_2^{\dagger} \Phi_1) + \kappa_{12} (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_2)^2 + \\ + \kappa_{13} (\Phi_1^{\dagger} \Phi_1) (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_2) + h.c.]$$
(3)

$$U_{\rm eff} = U + U^{(6)} + U^{(8)} + \dots$$
(4)

$$U = -\mu_1^2 (\Phi_1^{\dagger} \Phi_1) - \mu_2^2 (\Phi_2^{\dagger} \Phi_2) - [\mu_{12}^2 (\Phi_1^{\dagger} \Phi_2) + h.c.]$$

$$+ \lambda_1 (\Phi_1^{\dagger} \Phi_1)^2 + \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1)$$

$$+ [\lambda_5/2 (\Phi_1^{\dagger} \Phi_2) (\Phi_1^{\dagger} \Phi_2) + \lambda_6 (\Phi_1^{\dagger} \Phi_1) (\Phi_1^{\dagger} \Phi_2) + \lambda_7 (\Phi_2^{\dagger} \Phi_2) (\Phi_1^{\dagger} \Phi_2) + h.c.]$$
(5)

$$U^{(6)} = \kappa_{1}(\Phi_{1}^{\dagger}\Phi_{1})^{3} + \kappa_{2}(\Phi_{2}^{\dagger}\Phi_{2})^{3} + \kappa_{3}(\Phi_{1}^{\dagger}\Phi_{1})^{2}(\Phi_{2}^{\dagger}\Phi_{2}) + \kappa_{4}(\Phi_{1}^{\dagger}\Phi_{1})(\Phi_{2}^{\dagger}\Phi_{2})^{2} + \\ + \kappa_{5}(\Phi_{1}^{\dagger}\Phi_{1})(\Phi_{1}^{\dagger}\Phi_{2})(\Phi_{2}^{\dagger}\Phi_{1}) + \kappa_{6}(\Phi_{1}^{\dagger}\Phi_{2})(\Phi_{2}^{\dagger}\Phi_{1})(\Phi_{2}^{\dagger}\Phi_{2}) + \\ + [\kappa_{7}(\Phi_{1}^{\dagger}\Phi_{2})^{3} + \kappa_{8}(\Phi_{1}^{\dagger}\Phi_{1})^{2}(\Phi_{1}^{\dagger}\Phi_{2}) + \kappa_{9}(\Phi_{1}^{\dagger}\Phi_{1})(\Phi_{1}^{\dagger}\Phi_{2})^{2} + \\ + \kappa_{10}(\Phi_{1}^{\dagger}\Phi_{2})^{2}(\Phi_{2}^{\dagger}\Phi_{2}) + \kappa_{11}(\Phi_{1}^{\dagger}\Phi_{2})^{2}(\Phi_{2}^{\dagger}\Phi_{1}) + \kappa_{12}(\Phi_{1}^{\dagger}\Phi_{2})(\Phi_{2}^{\dagger}\Phi_{2})^{2} + \\ + \kappa_{13}(\Phi_{1}^{\dagger}\Phi_{1})(\Phi_{1}^{\dagger}\Phi_{2})(\Phi_{2}^{\dagger}\Phi_{2}) + h.c.]$$
(6)

Different methods, codes, assumptions

## Example of radiative corrections

 $\ldots$  to dimension-four operators  $^7$ 

$$\Delta\lambda_{4}^{2-1\text{cop}} = \frac{3}{8\pi^{2}}h_{t}^{2}h_{b}^{2}\frac{1}{16\pi^{2}}(h_{b}^{2}+h_{t}^{2}-8g_{\mathrm{S}}^{2})(X_{tb}l+l^{2})$$

$$-\frac{3}{96\pi^{2}}h_{t}^{4}\frac{1}{16\pi^{2}}\frac{|\mu|^{2}}{M_{\mathrm{SUSY}}^{2}}(3-\frac{|A_{t}|^{2}}{M_{\mathrm{SUSY}}^{2}})(6h_{t}^{2}-2h_{b}^{2}-16g_{\mathrm{S}}^{2})l$$

$$-\frac{3}{96\pi^{2}}h_{b}^{4}\frac{1}{16\pi^{2}}\frac{|\mu|^{2}}{M_{\mathrm{SUSY}}^{2}}(3-\frac{|A_{b}|^{2}}{M_{\mathrm{SUSY}}^{2}})(6h_{b}^{2}-2h_{t}^{2}-16g_{\mathrm{S}}^{2})l, \quad l = \log(M_{S}^{2}/m_{t}^{2}) \quad (7)$$

 $\ldots$  to dimension-six operators  $^8$ 

$$\begin{split} \Delta \kappa_1^{\text{thr}} &= \frac{h_b^6}{32M_S^2 \pi^2} \left( 2 - \frac{3|A_b|^2}{M_S^2} + \frac{|A_b|^4}{M_S^4} - \frac{|A_b|^6}{10M_S^6} \right) \\ &- h_b^4 \frac{g_1^2 + g_2^2}{128M_S^2 \pi^2} \left( 3 - 3\frac{|A_b|^2}{M_S^2} + \frac{|A_b|^4}{2M_S^4} \right) + \frac{h_b^2}{512M_S^2 \pi^2} \\ &\times \left( \frac{5}{3}g_1^4 + 2g_1^2g_2^2 + 3g_2^4 \right) \left( 1 - \frac{|A_b|^2}{2M_S^2} \right) - h_b^4 \frac{|\mu|^6}{320M_S^8 \pi^2} + h_t^4 \frac{(g_1^2 + g_2^2)|\mu|^4}{256M_S^6 \pi^2} \\ &- h_t^2 \frac{(17g_1^4 - 6g_1^2g_2^2 + 9g_2^4)|\mu|^2}{3072M_S^4 \pi^2} + \frac{g_1^2}{1024M_S^2 \pi^2} (g_1^4 - g_2^4), \end{split}$$
(8)

 $^7\mathrm{Carena,}$ Ellis, Pilaftsis, Wagner, Nucl. Phys. B 586, 92 (2000), etc $^8\mathrm{Dubinin},$  Petrova, Phys. Rev. D 95, 055021 (2017)

Elena Fedotova in collaboration with M.N. Dubinin 6/13

- $h, H, A, H^+, H^-$  in CP-conserving limit
- @ only 3d generation of squarks are important and have a common mass scale  $M_S$
- 3 all other SUSY particles are integrated out
- **9** free parameters:  $\tan \beta$ ,  $M_S$ ,  $A_{t,b}$ ,  $\mu$  and  $m_A$
- the Higgs-boson couplings to the heavier SM particles are SM-like (alignment limit)
- perturbative unitarity  $|\operatorname{Re}(x_i)| < 1$
- vacuum stability ('heuristic' bound<sup>10</sup>)

$$\frac{\max(A_{t,b},\mu)}{\min(m_{Q_3,U_3})} \le 3 \tag{9}$$

## Selection of model parameters

Let us fix

- $m_A=28 \text{ GeV}$
- Ø M<sub>S</sub> and tan β and ajust A, µ in such a way that m<sub>h/H</sub>=125 GeV in alignment limit (0 < A<sub>t,b</sub>, µ < 10 TeV)</p>

 $^9 \rm Kanemura, Yagyu, Phys. Lett. B751 (2015)<math display="inline">^{10} \rm Hollik,$  Weiglein, Wittbrodt, JHEP 1903 (2019) 109

Elena Fedotova in collaboration with M.N. Dubinin 7/13

|        |             | $M_S (\text{GeV})$            |                                                   |                                    |                      |           |  |  |
|--------|-------------|-------------------------------|---------------------------------------------------|------------------------------------|----------------------|-----------|--|--|
| an eta | $\dim$      | 600                           | 1000                                              | 2000                               | 3500                 | 5000      |  |  |
| 1      | four<br>six | $h^{125}, H^{125}$            | $h^{125}, H^{125}, H^{125}$<br>$h^{125}, H^{125}$ | $h^{125} \ h^{125},  H^{125}$      | $h^{125}_{-}$        | _         |  |  |
| 2      | four<br>six | $h^{125} \\ h^{125}, H^{125}$ | $h^{125} \ h^{125}, H^{125}, H^{125}$             | $h^{125} \ h^{125}_{al},  H^{125}$ | $H^{125}$            | $H^{125}$ |  |  |
| 3      | four<br>six | $h^{125} \ h^{125},  H^{125}$ | $h^{125} \ h^{125}, H^{125}, H^{125}$             | $H^{125} \ h^{125}_{al},  H^{125}$ | $H^{125}$            | _         |  |  |
| 5      | four<br>six | $h^{125} \ h^{125},  H^{125}$ | $h^{125} \ h^{125}_{al},  H^{125}$                | $h^{125} \ h^{125}_{al},  H^{125}$ | $H^{125}$            | _         |  |  |
| 15     | four<br>six | $h^{125} \\ h^{125}$          | $h^{125} \ h^{125}$                               | $h^{125} \ h^{125}$                | $h^{125} \\ h^{125}$ | _         |  |  |
| 20     | four<br>six | $h^{125} \ h^{125}$           | $h^{125} \ h^{125}$                               | $h^{125} \ h^{125}$                | $h^{125} \\ h^{125}$ | _         |  |  |

#### Appropriate parameter sets

| BPs | $\tan\beta$ | $M_S,  \text{GeV}$ | $A_{t,b},  \text{GeV}$ | $\mu$ , GeV |
|-----|-------------|--------------------|------------------------|-------------|
| 1   | 2           | 2000               | 8800                   | 5320        |
| 2   | 3           | 2000               | 7820                   | 6450        |
| 3   | 5           | 1000               | 3385                   | 5040        |
| 4   | 5           | 2000               | 6690                   | 7960        |

## Model predictions

| BPs | $m_H,  \text{GeV}$ | $m_{H^{\pm}},  \mathrm{GeV}$ | $\max  x_i $ | $\Gamma_A,  \text{GeV}$ |
|-----|--------------------|------------------------------|--------------|-------------------------|
| 1   | 134.4              | 129.7                        | 2.1          | 0.01                    |
| 2   | 132.3              | 130.0                        | 1.6          | 0.01                    |
| 3   | 127.7              | 127.3                        | 6.6          | 0.03                    |
| 4   | 130.4              | 131.3                        | 1.9          | 0.03                    |

- non-decoupling limit
- at the limit of fulfillment of the vacuum stability and perturbative unitarity conditions

#### Appropriate parameter sets

| BPs | an eta | $M_S,  \mathrm{GeV}$ | $A_{t,b},  \text{GeV}$ | $\mu$ , GeV |
|-----|--------|----------------------|------------------------|-------------|
| 1   | 2      | 2000                 | 8800                   | 5320        |
| 2   | 3      | 2000                 | 7820                   | 6450        |
| 3   | 5      | 1000                 | 3385                   | 5040        |
| 4   | 5      | 2000                 | 6690                   | 7960        |

## Model predictions

| BPs | $m_H,  \text{GeV}$ | $m_{H^{\pm}},  \mathrm{GeV}$ | $\max  x_i $ | $\Gamma_A,  \text{GeV}$ |
|-----|--------------------|------------------------------|--------------|-------------------------|
| 1   | 134.4              | 129.7                        | 2.1          | 0.01                    |
| 2   | 132.3              | 130.0                        | 1.6          | 0.01                    |
| 3   | 127.7              | 127.3                        | 6.6          | 0.03                    |
| 4   | 130.4              | 131.3                        | 1.9          | 0.03                    |

- non-decoupling limit
- at the limit of fulfillment of the vacuum stability and perturbative unitarity conditions

## Cross sections



#### Cuts



Cut-A: all background diagrams are omitted,  $\bar{b}$  for SR1 event category Cut-B: all background diagrams are omitted,  $\bar{b}$  for SR2 event category, 25 GeV  $\leq m_{\mu\mu} \leq 32$  GeV Cut-C: SR1 event category Cut-D: SR2 event category Cut-E: SR2 event category, 25 GeV  $\leq m_{\mu\mu} \leq 32$  GeV

## Cross sections



Cuts

Muons 
$$p_T > 25 \text{ GeV}, |\eta| < 2.1, m_{\mu\mu} > 12 \text{ GeV}$$
  
b-jet  $p_T > 30 \text{ GeV}, \eta \le 2.4$   
 $\bar{b}$ -jet  $p_T > 30 \text{ GeV}, 2.4 \le |\eta| \le 4.7 \text{ (SR1)}, \eta \le 2.4 \text{ (SR2)}$ 

Cut-A: all background diagrams are omitted,  $\bar{b}$  for SR1 event category Cut-B: all background diagrams are omitted,  $\bar{b}$  for SR2 event category, 25 GeV  $\leq m_{\mu\mu} \leq 32$  GeV Cut-C: SR1 event category Cut-D: SR2 event category Cut-E: SR2 event category, 25 GeV  $\leq m_{\mu\mu} \leq 32$  GeV

Table:  $\sigma(gg \to b\bar{b}A) \times BR(A \to \mu^+\mu^-)$  (fb), where BR $(A \to \mu^+\mu^-) = 1.6 \cdot 10^{-4}$ . Cut-A and Cut-B are imposed on  $b, \bar{b}$  jets for SR1 and SR2 event categories, correspondingly.

|            |        | SB1 SB2                   |               |                                                           |               |                |                         |  |
|------------|--------|---------------------------|---------------|-----------------------------------------------------------|---------------|----------------|-------------------------|--|
| $\sqrt{s}$ |        |                           | SUL           | μ.<br>                                                    |               | 2              |                         |  |
| TeV        | an eta | $\sigma(gg \to bbA)$ (fb) |               | $\sigma \times BR \text{ (fb)} \qquad \sigma(gg \to bbA)$ |               | bbA) (fb)      | $\sigma \times BR$ (fb) |  |
|            | 2      | 56.63                     |               | 0.009                                                     | 386.27        |                | 0.062                   |  |
| 8          | 3      | 127.19                    |               | 127.19 0.020 870.73                                       |               | 0.139          |                         |  |
|            | 5      | 355.90                    | )             | 0.057                                                     | 242           | 3.10           | 0.388                   |  |
|            | 2      | 165.68                    | 3             | 0.026                                                     | 904           | 4.65           | 0.145                   |  |
| 13         | 3      | 370.38                    | 3             | 0.059                                                     | 202           | 1.10           | 0.323                   |  |
|            | 5      | 1040.8                    | 8             | 0.167                                                     | 564           | 0.90           | 0.903                   |  |
|            |        |                           |               |                                                           |               |                |                         |  |
|            |        | $\sqrt{s}$                | 8             | TeV                                                       | 13            | TeV            | _                       |  |
|            | Ever   | nt category               | SR1           | SR2                                                       | SR1           | SR2            |                         |  |
|            | СМ     | S $\sigma_{\rm fid}$ (fb) | $4.1 \pm 1.4$ | $4.2 \pm 1.7$                                             | $1.4 \pm 0.9$ | $-1.5 \pm 1.0$ | )                       |  |

 $\sigma(gg \to \mu^+ \mu^- b\bar{b})$ 

|               | SR1 |       |        |       | SR2     |       |  |
|---------------|-----|-------|--------|-------|---------|-------|--|
| $\sqrt{s}$    | BP  | Cut-A | Cut-C  | Cut-B | Cut-D   | Cut-E |  |
|               | 1   | 0.009 | 10.094 | 0.065 | 267.240 | 0.730 |  |
| $8 { m TeV}$  | 2   | 0.020 | 13.242 | 0.134 | 236.750 | 0.742 |  |
|               | 3   | 0.056 | 8.814  | 0.384 | 270.810 | 0.758 |  |
|               | 4   | 0.057 | 9.800  | 0.387 | 223.870 | 0.769 |  |
|               |     |       |        |       |         |       |  |
|               | 1   | 0.027 | 55.994 | 0.148 | 571.790 | 1.887 |  |
| $13 { m TeV}$ | 2   | 0.058 | 48.692 | 0.310 | 609.650 | 1.903 |  |
|               | 3   | 0.165 | 53.642 | 0.902 | 610.500 | 1.972 |  |
|               | 4   | 0.191 | 31.760 | 0.905 | 587.320 | 1.970 |  |

Table:  $\sigma(gg \to \mu^+ \mu^- b\bar{b})$  (fb) for SR1 and SR2 categories.

- light pseudoscalar with the mass  $m_A = 28$  GeV can be embedded in the two-doublet MSSM Higgs sector extended by dimension-six effective operators respecting the alignment limit for h(125 GeV) state in a rather specific range of parameter space, when the superparticle mass scale is around 1–2 TeV,  $\tan \beta \sim$ 2–5 and soft SUSY breaking parameters  $A_{t,b}$ ,  $\mu$  are large, from 3 TeV to 9 TeV;
- such range of the MSSM parameter space is at the limit of fulfillment of the vacuum stability and perturbative unitarity conditions;
- cross section calculations at the tree level for the partonic level signal in  $pp \rightarrow \mu^+ \mu^- b\bar{b}$  at the energies  $\sqrt{s} = 8$  and 13 TeV give signal cross sections by a factor of 2–5 smaller than the experimentally obtained cross section of a few fb;
- numerical estimations based on charged Higgs boson production due to top quark decay are in agreement with current LHC constraints