# Neutrino anomalies, light sterile neutrinos and Baksan Experiment on Sterile Transitions (BEST)

#### **Dmitry Gorbunov**

Institute for Nuclear Research of RAS, Moscow

International Conference on Quantum Field Theory and High Energy Physics, QFTHEP 2019

#### Hotel Fregat, Sochi, Russia

Dmitry Gorbunov (INR)

Neutrino anomalies and BEST

27.09.2019, QFTHEP2019 1 / 44



### Standard Model: Major Problems

Gauge fields (interactions):  $\gamma$ ,  $W^{\pm}$ , Z, gThree generations of matter:  $L = \begin{pmatrix} v_L \\ e_L \end{pmatrix}$ ,  $e_R$ ;  $Q = \begin{pmatrix} u_L \\ d_L \end{pmatrix}$ ,  $d_R$ ,  $u_R$ 

- Describes
  - all experiments dealing with electroweak and strong interactions
- Does not describe (PHENO)
  - Neutrino oscillations
  - Dark matter (Ω<sub>DM</sub>)
  - Baryon asymmetry (Ω<sub>B</sub>)
  - Inflationary stage

(THEORY)

- Dark energy (Ω<sub>Λ</sub>)
- Strong CP-problem
- Gauge hierarchy
- Quantum gravity

???

#### Only direct evidence for New Physics

#### 船

# Neutrino oscillations: masses and mixing angles

#### Solar $2 \times 2$ "subsector"

Atmospheric 2 × 2 "subsector"





http://hitoshi.berkeley.edu/neutrino/

 $m_{
m sol}^2 pprox 7.4 imes 10^{-5}\, {
m eV}^2$ 

 $m_{atm}^2\approx 2.5\times 10^{-3}\,eV^2$ 

DAYA-BAY, RENO, T2K:  $sin^2 2\theta_{13} \approx 0.08$ 

#### 敭

#### Physics behind the neutrino oscillations is still elusive

nature of neutrino mass: Dirac vs Majorana?



### Physics behind the neutrino oscillations is still elusive





### Physics behind the neutrino oscillations is still elusive

- nature of neutrino mass (Dirac vs Majorana)
- neutrino mass hierarchy
- CP-violation
- may be relevant for the matter-antimatter asymmetry
- neutrino anomalies ask for larger mass splitting

$$m_{\rm sol}^2 \ll m_{\rm atm}^2 \ll m_{\rm anom}^2 \simeq 1 \, {\rm eV}^2$$

- LSND  $\rightarrow$  MiniBooNE
- SAGE & GALLEX: gallium anomaly
- reactor antineutrinos → DANSS, NEUTRINO-4

appearance disappearance disappearance

do not fit to 3v



# These issues must be fixed before suggesting *v* as a tool

- Explore entire structures of Earth and Sun
- Investigate the SN explosion mechanism
- Monitor nuclear reactors (nuclear power plants, etc)

• . . .

New Physics can interfere if its scale is low

# One more light neutral fermion...

1901.08330









#### 2 'heavy' neutrinos

- TOO bad for standard cosmology
- CONTRADICTS precise measurements of solar and atmospheric neutrino fluxes
- Too heavy for 0vββ if Majorana

#### 1 'heavy' neutrino

- bad for standard cosmology
- some tension between appearence and disappearence

#### 3 'heavy' neutrinos

- VERY bad for standard cosmology
- Too heavy for 0vββ if Majorana

Dmitry Gorbunov (INR)

Neutrino anomalies and BEST



# Sterile neutrinos: NEW ingredients

One of the optional physics beyond the SM:

sterile:new fermions uncharged under the SM gauge groupneutrino:explain observed oscillations by mixing with SM (active)neutrinos

#### Attractive features:

- possible to achieve within renormalizable theory
- only N = 2 Majorana neutrinos needed
- baryon asymmetry via leptogenesis
- dark matter (with  $N \ge 3$  at least)
- light(?) sterile neutrinos might be responsible for neutrino anomalies...?

#### Disappointing feature:

#### Major part of parameter space is UNTESTABLE

Dmitry Gorbunov (INR)



Dmitry Gorbunov (INR)

ä



#### Seesaw mechanism: $M_N \gg 1 \text{ eV}$

With  $m_{active} \lesssim 1 \text{ eV}$  we work in the seesaw (type I) regime:

$$\mathscr{L}_{N} = \overline{N}i\partial N - f\overline{L}_{e}^{c}\widetilde{H}N - \frac{M_{N}}{2}\overline{N}^{c}N + \text{h.c.}$$

Higgs gains  $\langle H \rangle = v / \sqrt{2}$  and then

$$\mathscr{V}_{N} = \frac{1}{2} \left( \overline{v}_{e}, \overline{N}^{c} \right) \begin{pmatrix} 0 & v \frac{f}{\sqrt{2}} \\ v \frac{f}{\sqrt{2}} & M_{N} \end{pmatrix} \begin{pmatrix} v_{e} \\ N \end{pmatrix} + \text{h.c.}$$

For a hierarchy  $M_N \gg M^D = v \frac{f}{\sqrt{2}}$  we have

flavor state  $v_e = Uv_1 + \theta N$  with  $U \approx 1$  and

active-sterile mixing: 
$$\theta = \frac{M^D}{M_N} = \frac{v f}{2M_N} \ll 1$$

and mass eigenvalues

$$\approx M_N$$
 and  $-m_{active} = \theta^2 M_N \ll M_N$ 

Dmitry Gorbunov (INR)

Neutrino anomalies and BEST



#### Disclaimer

- There are no any direct indication of the sterile neutrino scale
- In what follows we consider light,  $m \sim 1 \text{ eV}$  sterile neutrinos Neutrino anomalies
- No solid theoretical motivations for this scale,  $M_N \sim m_v$ May be except Mirror World concept...?
- $2 \leftrightarrow 2$  oscillations are enough
- Could be not exactly sterile: non-minimal models of neutrino mixing can fit to this scheme as well



# Light sterile neutrinos and cosmology

• Analysis of CMB & LSS (e.g., Planck, SDSS): Mixing  $\theta \sim 0.1$ -1, mass  $\sim 1 \text{ eV}$ NONE (or, may be, one)

- there are  $2\sigma$  discrepancies in  $H_0$ ,  $\sigma_8$ , lensing, ... small scale crisis, SPT vs Planck, ...

• Production in the early Universe can be efficiently suppressed, e.g., by scalar field

 $\mathscr{L} = \phi \bar{N}^c N + \text{h.c.}$ 

or if the reheating scale is low,  $T_{reh} \sim 10 \, \text{MeV}$ 

#### 船

## Description of neutrino oscillations

Oscillation length

small  $L_{osc} \leftrightarrow \text{big } \Delta m$ 

$$L_{osc} = \frac{4\pi E}{\Delta m^2} = (2.5 \text{ m}) \cdot \frac{E}{\text{MeV}} \frac{\text{eV}^2}{\Delta m^2}$$

Oscillation probability:

$$P(\mathbf{v}_{\alpha} \to \mathbf{v}_{\beta}) = \left| \delta_{\alpha\beta} - \sin^2 2\theta_{\alpha\beta} \sin^2 \left( \frac{L \Delta m_{41}^2}{4E} \right) \right|, \quad \sin^2 2\theta_{\alpha\beta} = 4 \left| U_{\alpha4} \right|^2 \left| \delta_{\alpha\beta} - \left| U_{\beta4} \right|^2 \right|$$

transition probability

$$P(\mathbf{v}_{\alpha} \to \mathbf{v}_{\beta \neq \alpha}) = \sin^2 2\theta_{\alpha\beta} \sin^2 \left(\frac{L \Delta m_{41}^2}{4E}\right), \quad \sin^2 2\theta_{\alpha\beta} = 4 \left|U_{\alpha4}\right|^2 \left|U_{\beta4}\right|^2$$

survival probability

disappearance

appearance

$$P(\mathbf{v}_{\alpha} \to \mathbf{v}_{\alpha}) = 1 - \sin^2 2\theta_{\alpha\alpha} \cdot \sin^2 \left(\frac{\Delta m^2}{4E}L\right), \quad \sin^2 \theta_{\alpha\alpha} = |U_{\alpha4}|^2$$

Dmitry Gorbunov (INR)

Neutrino anomalies and BEST

#### **M N**

# LSND-anomaly: appearance, $\bar{v}_{\mu} \rightarrow \bar{v}_{e}$



Dmitry Gorbunov (INR)

Neutrino anomalies and BEST

LSND (1993-1998): production by 798 MeV protons

$$\pi^+ 
ightarrow \mu^+ v_\mu \,, \,\, \mu^+ 
ightarrow e^+ v_e \, ar v_\mu$$

detection via inverse beta decay (IBD)

$$\bar{v}_e + p \rightarrow n + e^+$$

 $3.8\sigma$  effect transition probability

 $(2.64\pm 0.67\pm 0.45)\times 10^{-3}$ 

sterile neutrino mass

 $\Delta m \sim 1 \, {
m eV}$ 

27.09.2019, QFTHEP2019

019 15/44

# MiniBooNE anomalies (2011) ... $\bar{v}_{\mu} \rightarrow \bar{v}_{e}, v_{\mu} \rightarrow v_{e}$



Dmitry Gorbunov (INR)

Neutrino anomalies and BEST

# MiniBooNE anomalies (2018) ... $\bar{v}_{\mu} \rightarrow \bar{v}_{e}, v_{\mu} \rightarrow v_{e}$

1805.12028



Dmitry Gorbunov (INR)

Neutrino anomalies and BEST

27.09.2019, QFTHEP2019 17 / 44

# MiniBooNE anomalies (2018) ... $\bar{v}_{\mu} \rightarrow \bar{v}_{e}, v_{\mu} \rightarrow v_{e}$



Dmitry Gorbunov (INR)

Neutrino anomalies and BEST

## Solar neutrinos: fusion $p + p \rightarrow D + e^+ + v_e, \ldots$



Dmitry Gorbunov (INR)

Neutrino anomalies and BEST

0.1%

pp∏

--- Kamiokand

8<sub>B</sub>

hep

10

20

#### ЯN ИК

### Measurement of the solar neutrino flux by SAGE

#### Sun: $p + p \rightarrow {}^{2}H + e^{+} + v_{e}$



#### Earth: $^{71}\text{Ga} + v_e \rightarrow ^{71}\text{Ge} + e^-$



# SAGE & GALLEX anomalies in numbers

#### Sources

 $^{51}Cr$  $^{37}Ar$  $E_1 = 0.75 \text{ MeV} (f_1 = 96\%)$  $E_1 = 0.811 \text{ MeV}$  $E_2 = 0.43 \text{ MeV} (f_2 = 4\%)$  $E_2 = 0.813 \text{ MeV}$ 

#### Experiments

SAGE source  $\approx$  sphere of r = 6.3 cm in the center of spherical vessel  $r_1 = 25.3$  cm and  $r_2 = 72.6$  cm GALLEX source  $\approx$  sphere of r = 0.4 m in the center of spherical vessel  $r_1 = 0.45$  m and  $r_2 = 2.5$  m

$$R^{th} = \frac{1}{r_2 - r_1} \int_{r_1}^{r_2} dr \left[ P(E_1, |\vec{r} - \delta \vec{r}|) f_1 + P(E_2, |\vec{r} - \delta \vec{r}|) f_2 \right]$$

 $\begin{aligned} R_{\text{SAGE}}^{obs} \left( {^{51}\text{Cr}} \right) &= 0.93 \pm 0.12 \\ R_{\text{SAGE}}^{obs} \left( {^{37}\text{Ar}} \right) &= 0.77 \pm 0.09 \end{aligned}$ 

$$\begin{split} R_{GALLEX}^{obs} \left( {^{51}\text{Cr}} \right) &= 0.93 \pm 0.11 \\ R_{GALLEX}^{obs} \left( {^{51}\text{Cr}} \right) &= 0.80 \pm 0.11 \end{split}$$

1710.06326



# The combined fit to SAGE+GALLEX



Dmitry Gorbunov (INR)

Neutrino anomalies and BEST

27.09.2019, QFTHEP2019 22 / 44

#### 瀫

## Reactor anomaly: disappearance $\bar{v}_e \rightarrow N$ ?



#### Deficit due to 6% correction to $\bar{v}_e$ budget

- new nuclear rates
- new neutron life-time:

 $\tau_n: 926 \,\mathrm{s} 
ightarrow 886 \,\mathrm{s}$ 

#### However: the value of uncertainty remains the same,

 $\sim$  3%...

Combined fit to Reactor and Gallium data

# Bunch of proposals to test the anomaly...

see 1204.5379

Dmitry Gorbunov (INR)

Neutrino anomalies and BEST



### Reactor anomaly: disappearance $\bar{v}_e \rightarrow N$ ?

RENO, Daya Bay, Double Chooz

1901.08330

+ unexpected bump at  $E_{\bar{\nu}} \simeq 4 \, \text{MeV}$ 



#### Reactor anomaly: new comers...new evidence?



Dmitry Gorbunov (INR)

Neutrino anomalies and BEST

27.09.2019, QFTHEP2019 25 / 44



#### Disappearances of $v_e$ and $v_{\mu}$ ...



#### **N**

## Disappearance vs Appearance: rulling out LSND ??



1901.08330

Dmitry Gorbunov (INR)

Neutrino anomalies and BEST

27.09.2019, QFTHEP2019 27 / 44

### Reactor anomaly: last year results...

1809.10516

PROSPECT (USA, 2018-...) 85 MW<sub>th</sub> compact reactor segmented detector covering L = 6-7.5 m measures flux ratios STEREO (France, 2018-...): 58 MW<sub>th</sub> compact reactor segmented detector covering L = 9.4-11.1 m measures flux ratios

NEUTRINO-4 (Russia, 2018-100 MW<sub>th</sub> extracompact reactor SM-3 (Dimitrovgrad) segmented movable detector L = 6-12 m measures flux ratios best fit

 $\Delta m^2 \simeq 7.2 \, \text{eV}^2$  $\sin^2 2\theta_{ee} \simeq 0.35$ 



Dmitry Gorbunov (INR)

Neutrino anomalies and BEST

27.09.2019, QFTHEP2019 28 / 44

#### 船

#### Consistencey of Gallium and NEUTRINO-4 anomalies



1905.07437

almost  $4\sigma$  anomaly



#### Problems with reactor experiments

- finite size ΔL<sub>S</sub> of antineutrino source (nuclear reactor) smearing oscillations after averaging over ΔL<sub>S</sub> ~ L<sub>osc</sub>
- finite energy resolution ΔE<sub>D</sub> of antineutrino detector smearing oscillations after averaging over ΔE<sub>S</sub> ~ L<sub>osc</sub> DANSS: ΔE/E = 34% at 1 MeV, NEUTRINO-4: ΔE/E = 16% at 1 MeV
- poor shielding of cosmic background low signal-to-background ratio PROSPECT: S/B=1.36, STEREO: S/B=0.9, NEUTRINO-4: S/B=0.54

#### Monochromatic compact source is needed !!





Dmitry Gorbunov (INR)

Neutrino anomalies and BEST

27.09.2019, QFTHEP2019 31 / 44



# Baksan Experiment on Sterile Transition

proposal: 1006.2103, 1204.5379, ... artificial dichromatic source: <sup>51</sup>Cr of 3 MCi ( $\Delta W/W < 0.5\%$ ) cooling system heating system neutrino flux measurment:  $^{71}\text{Ga} + v_{e} \rightarrow ^{71}\text{Ge} + e^{-}$ source 2 detector volumes: for the flux cross check R2Ga geometry is chosen: to search for  $\sim$  1 eV neutrino R1 Ga data taking: July-September 2019  $\tau_{51Cr} = 27.7d$ Compressor pumps





Dmitry Gorbunov (INR)

Neutrino anomalies and BEST

27.09.2019, QFTHEP2019 33 / 44





Dmitry Gorbunov (INR)

Neutrino anomalies and BEST

27.09.2019, QFTHEP2019 34 / 44



# **BEST** layout

#### 1602.03826





# BEST constraints in case of null results





# BEST confirming the anomaly



Dmitry Gorbunov (INR)

Neutrino anomalies and BEST

#### **AN**

### null BEST combined with previous anomalies



#### **N**R

# SAGE+GALLEX+BEST confirmed anomaly



Dmitry Gorbunov (INR)

Neutrino anomalies and BEST

27.09.2019, QFTHEP2019 39 / 44



### If NEUTRINO-4 confirmed



1905.07437

It will be  $5\sigma$  discovery



### Summary on light sterile neutrinos

- Introducing sterile neutrinos is the most economic explanation of neutrino oscillations within renormalizable approach
- 1 eV- sterile neutrinos are required to explain v anomalies
- with a little modification can be consistent with standard ACDM cosmology
- there are many issues in reactor neutrino anomaly... DANSS changed results (2019)

 $\Delta m^2 = 1.4 \,\mathrm{eV}^2, \ \sin^2 2\theta = 0.05 \longrightarrow \Delta m^2 = 0.35 \,\mathrm{eV}^2, \ \sin^2 2\theta = 0.11$ 

which is consistent  $(2\sigma)$  with Gallium anomaly

- Neutrino-4 is consistent with Gallium anomaly (together  $\approx 4\sigma)$
- BEST is testing all these hypotheses right now new results at 2019/2020

stay tuned





### **Backup slides**



#### two stages with sources: Cr+Cr vs Cr+Zn

