Scaling properties of azimuthal anisotropy from RHIC to NICA

Arkadiy Taranenko

Petr Parfenov, Anton Truttse

National Research Nuclear University MEPhl

The XXIV International Workshop High Energy Physics and Quantum Field Theory September 22-29, 2019, Sochi, Russia

Project supported by RFBR № 18-02-40086

OUTLINE

- 1. Why measure anisotropic flow?
- 2. Flow (V_n) and sQGP at RHIC/LHC
- 3. Flow results from Beam Energy Scan (RHIC)
- 4. Outlook for flow measurements at NICA

Anisotropic Flow in Heavy-Ion Collisions: 1988

Provides reliable estimates of pressure & pressure gradients

Can address questions related to thermalization

Gives insights on the transverse dynamics of the medium

Provides access to the transport properties of the medium: EOS, sound speed (c_s) , viscosity, etc H

Plastic Ball Collaboration,3H.H. Gutbrod et al., Phys. Lett. B216, 267 (1989)

Anisotropic Flow at RHIC-LHC

Initial eccentricity (and its attendant fluctuations) ϵ_n drive momentum anisotropy v_n with specific viscous modulation

Vn of identified hadrons at RHIC/LHC

J. Adam et al., (ALICE) JHEP 1609, 164

Mass ordering at p_T < 2 GeV/c (hydrodynamic flow, hadron re-scattering) : for heavy-particles the radial flow "blueshifts" the entire flow signal to higher p_T Baryon/meson grouping at $p_T > 2.5$ GeV/c (recombination/coalescence),

Scaling properties of collective flow

"Change of collective-flow mechanism indicated by scaling analysis of transverse flow "A. Bonasera, L.P. Csernai, Phys.Rev.Lett. 59 (1987) 630 The general features of the collective flow could, in principle, be expressed in terms of scale-invariant quantities. In this way the particular differences arising from the different initial conditions, masses, energies, etc., can be separated from the general fluid-dynamical features

"Collective flow in heavy-ion collisions", W. Reisdorf, H.G. Ritter Ann.Rev. Nucl.Part.Sci. 47 (1997) 663-709 :

There is interest in using observables that are both coalescence and scale-invariant. ... The evolution in

non-viscous hydrodynamics does not depend on the size of the system nor on the incident energy, if distances are rescaled in terms of a typical size parameter, such as the nuclear radius. Momenta and energies are rescaled in terms of the beam $_{6}$ velocities, momenta or energies.

Flow is acoustic

PRC 84, 034908 (2011) P. Staig and E. Shuryak.

Roy A. Lacey, et al.

- \triangleright v_n measurements are sensitive to system shape (ε_n), system size (RT) and transport coefficients $\left(\frac{\eta}{s}, \frac{\zeta}{s}, \dots\right)$. arXiv:1305.3341
- Acoustic ansatz \geq
 - \checkmark Sound attenuation in the viscous matter reduces the magnitude of v_n .
- Anisotropic flow attenuation,

$$\frac{v_n}{\varepsilon_n} \propto e^{-\beta n^2}, \ \beta \propto \frac{\eta}{s} \frac{1}{RT}$$

From macroscopic entropy considerations $S \sim (RT)^3 \propto \frac{dN}{dn}$

arXiv:1601.06001

Roy A. Lacey, et al.

PRC 88 044915 (2013)

$$ln\left(\frac{\nu_n}{\epsilon_n}\right) \propto A \frac{\eta}{s} \left(\frac{dN}{d\eta}\right)^{\frac{-1}{3}}$$
PRC 88, 044915 (201.
E. Shuryak and I. Zahe
Nu + Au
$$U + U$$

$$Cu + Au
Cu + Cu
Cu + Cu
Cu + Cu
Cu + Au
$$U + U$$

$$Cu + Au
Cu + Cu
Cu + Cu
Cu + Au
Cu + Au
Cu + Cu
Cu + Au
Cu + Au
Cu + Cu
Cu + Au
Cu +$$$$

Acoustic Scaling -

Characteristic 1/(RT) viscous damping validated

✓ Clear pattern for n² dependence of viscous attenuation

 \checkmark Important constraint for η /s & ζ/s

V₂ of identified hadrons at top RHIC energy: pions

Scaling with integral flow of charged hadrons

9 $V_2(PID, p_T, centrality, \sqrt{s_{NN}}) = V_2(h, centrality, \sqrt{s_{NN}}) * V_2(PID, p_T)???$

V₂ of identified hadrons at top RHIC energy: protons

Scaling with integral flow of charged hadrons

for protons the strong radial flow "blueshifts" the entire flow signal to higher p_T : $p_T \sim p_T^{th} + mc\beta$

V₂ of identified hadrons at top RHIC energy: protons

Use the geometrical scaling to estimate "blue shift" for protons

M. Petrovici at el, Phys Rev C 98 (2018)

Elliptic flow of identified hadrons at LHC : protons

Scaling with integral flow of charged hadrons + correction for "blue shift"

 $V_2(PID, p_T, centrality, \sqrt{s_{NN}}) = V_2(h, centrality, \sqrt{s_{NN}}) * V_2(PID, p_T)???$

Elliptic flow of identified hadrons at RHIC/LHC : pions

Scaling with integral flow of charged hadrons

¹³ $V_2(PID, p_T, centrality, \sqrt{s_{NN}}) = V_2(h, centrality, \sqrt{s_{NN}}) * V_2(PID, p_T)???$

 V_n shows a monotonic increase with beam energy. The viscous coefficient, which encodes the transport coefficient (η/s), indicates a non-monotonic behavior as a function of beam energy.

Elliptic Flow at RHIC–BES: $\sqrt{s_{NN}}$ = 7.7-62.4 GeV

Phys. Rev. C 93 (2016) 14907

15 $V_2(PID, p_T, centrality, \sqrt{s_{NN}}) = V_2(h, centrality, \sqrt{s_{NN}})^* V_2(PID, p_T)???$

Elliptic Flow at RHIC–BES: $\sqrt{s_{NN}}$ = 7.7-62.4 GeV

¹⁶ $V_2(PID, p_T, centrality, \sqrt{s_{NN}}) = V_2(h, centrality, \sqrt{s_{NN}}) * V_2(PID, p_T)???$

Excitation function of differential elliptic flow

Au+Au $\sqrt{s_{NN}}$ = 2.0 - 62.4 GeV, mid-central 2.00 GeV, FOPI >^{∾0.2} 2.08 GeV, FOPI protons 2.40 GeV, FOPI 2.70 GeV, E895 0.1 3.30 GeV, E895 FOPI (15-29%) 3.80 GeV, E895 ф E895 (12-25%) 7.7 GeV, STAR 0 STAR (10-40%) 11.5 GeV, STAR 14.5 GeV, STAR 19.6 GeV, STAR -0.1 27 GeV, STAR 39 GeV, STAR 62.4 GeV, STAR -0.2 -0.32 З () P_T (GeV/c)

EPJ Web Conf. 204 (2019) 03009

High precision differential measurements of anisotropic flow? 17

Elliptic Flow at SIS-AGS: interactions with spectators

a delicate balance between (i) the ability of pressure developed early in the reaction zone and (ii) the passage time for removal of the shadowing by 18 spectators

v₂ Flow at SIS-AGS: scaling relations

FOPI: v_2 of protons from Elab=0.09 to 1.49 GeV Phys.Lett. B612 (2005) 173-180 2 MЗ 0.1 -0.05 -0.1 -0.15 -0.1 -0.2 -0.2 0.6 0.09 -0.25 0.12 -0.3 -0.3 0.150.251.2 -0.35 1.490.4 -0.4 -0.4 1.5 2.5 0.5 1.5 0.5 2 0 1 2

p_t(0)

The rather good scaling observed suggest that c_s does not change significantly over beam energy range 0.4 – 2.0 AGeV.

Flow at SIS: rapidity dependence of v2 and EOS

HM – stiff momentum dependent with K=376 MeV SM – soft momentum dependent with K=200 MeV FOPI data : Nucl. Phys. A 876 (2012) 1 IQMD : Nucl Phys. A 945 (2016)

V2n=|V20|+|V22| Fit: V2(y0)=V20+V22*Y0^2

۷ک

Conclusions and Perspectives

- Anisotropic flow measurements provides access to the transport properties of the medium: EOS, sound speed (cs), viscosity, etc. Scaling relations help to understand the physics of the process.
- BM@N/NICA energies are very interesting: transition between hadronic and partonic matter.
- Robust experimental results and an intensive collaboration between theory and experimental groups is necessary to exploit this physics

Flow performance study for FHCAL TDR (2018)

Technical Design Report for the MPD Experiment

Forward Hadron Calorimeter (FHCal)

December 2016

http://mpd.jinr.ru/doc/mpd-tdr/

FHCal coverage: 2.2<|η|< 4.8

Excitation function of integral elliptic flow

High precision differential measurements of anisotropic flow?

Flow performance: v_n of charged hadrons: MPD (NICA)

P. Parfenov, I. Selyuzhenkov, AT, (MEPhl), J.Phys.Conf.Ser. 798 (2017) no.1, 012067

2.2<|η|**< 4.8**

Perfect Liquid at RHIC and LHC

$$\frac{\eta}{s}(T,\mu), \frac{\zeta}{s}(T,\mu), c_s(T), \hat{q}(T), \alpha_s(T), \text{etc}$$

Acoustic Scaling - RT $ln\left(\frac{v_n}{\epsilon_n}\right) \propto A \frac{\eta}{s} \left(\frac{dN}{d\eta}\right)^{\frac{-1}{3}}$

R.A. Lacey et al Phys. Rev. C **98**, 031901(R), 2018

✓ Characteristic 1/(RT) viscous damping validated

✓ Clear pattern for n² dependence of viscous attenuation

 Viscous damping supersedes the influence of eccentricity for "small" systems

v_2 of identified hadrons from RHIC to LHC (viscous hydrodynamics)

Chun Shen and Ulrich Heinz, Phys. Rev. C 85, 054902(2012), VISH2+1 model calculations

✓ For pions $v_2(p_T)$ varies with $\sqrt{s_{NN}}$ very similarly to the total charged hadron $v_2(p_T)$. ✓ For protons the strong radial flow "blueshifts" the entire flow signal to higher p_T .

Beam Energy Dependence of Elliptic Flow (v_2)

STAR: Phys. Rev. C 86 (2012) 54908

Surprisingly consistent as the energy changes by a factor ~400 Initial energy density changes by nearly a factor of 10 No evidence from v2 of charged hadrons for a turn off of the QGP *How sensitive is* v_2 *to QGP*?

Substantial particleantiparticle split at lower energies

Elliptic and triangular flow at RHIC BES

Models show that higher harmonic ripples are more sensitive to the existence of a QGP phase

In models, v_3 goes away when the QGP phase disappears