Perspectives of thermal photon measurements in heavy ion collisions at NICA

<u>E. Kryshen</u>, D. Ivanischev, D. Kotov, M. Malaev, V. Riabov, Yu. Riabov (NRC KI, Petersburg Nuclear Physics Institute, Russia) for the MPD collaboration

> QFTHEP, Sochi 24 September 2019

Project supported by RFBR № 18-02-40045

Phase diagram of nuclear matter

Thermal radiation in heavy ion collisions

- Black body radiation
 - Real or virtual photons
 - Inverse slope proportional to T_{eff}
 - Photons leave the medium without interaction

e⁺

Photon spectra at RHIC and LHC

PHENIX (AuAu @ 200 GeV)

ALICE (PbPb @ 2760 GeV)

PHENIX: Phys. Rev. Lett. 104 (2010) 132301

T_{eff} = 297 ± 12 (stat) ± 41 (syst) MeV

Effective temperature vs energy

T_{eff} vs. collision energy

J. Phys.: Conf. Ser. 1070 (2018) 012012

Flow of direct photons

Challenge: decay photons

Inclusive photon spectra are dominated by decay photons

$$R_{\gamma} = \frac{\gamma_{\rm inc}}{\gamma_{\rm deca}}$$

Relative contributions of different hadrons to the total decay photon spectrum as a function of the decay photon transverse momentum

ALI-PUB-97746

Neutral meson spectra

ALICE: Phys.Rev. C98 (2018) 044901

 $R_{AA} = \frac{N_{AA}^{J/\psi}}{\langle N_{coll} \rangle N_{pp}^{J/\psi}} = 1 \rightarrow \text{No medium effect}$ $< 1 \rightarrow \text{Suppression}$ $> 1 \rightarrow \text{Enhancement}$

UrQMD and PHSD predictions at NICA energies

UrQMD and PHSD generators: good agreement in neutral meson cross sections

Photon reconstruction: two methods

- Electromagnetic calorimeters
 - Efficient at $p_T > 2 \text{ GeV/c}$
 - Hardware trigger capabilities
- Photon conversion $\gamma \rightarrow e^+e^-$ in the material
 - $P = 1 \exp(-7/9 x/X_0)$
 - Efficient at $0.5 < p_T < 4 \text{ GeV/c}$
 - Much better resolution at low p_T

10

MPD experiment at NICA

- CMS Energy: 4-11 GeV
- Design luminosity: 10^{27} cm⁻¹ s⁻¹
- Stage 1 (2021-2022): TPC, TOF, ECAL, FHCal, FFD
- Stage 2 (>2023):
 ITS + EndCap

Electron PID

- TPC dE/dx: 0.2 0.5 GeV/c
- TOF: p_T < 0.3 GeV/*c*
- Possibility to use EMCal at higher p_T under investigation.

Photon conversion centers

Main conversion structures in Stage 1:

- Beam pipe: 0.3% X₀
- Inner TPC barrel structures: 2.4% X₀ Future:
- Inner tracking system
- Dedicated photon convertor (cylindrical metal pipe) under investigation

Conversion reconstruction efficiency

- Studied with UrQMD generator + MPDROOT Stage 1 setup
- Ongoing efforts to increase photon reconstruction efficiency

Neutral meson reconstruction efficiency

Embedded signal simulations

- Embedding technique used to study reconstruction efficiency vs p_T
- 400 000 min. bias UrQMD events @ 11 GeV
- 500 π^0 + 500 η embedded with flat p_T distribution
- Example: 2 < p_T <2.5 GeV/c

First-year projections

- L~5 x 10²⁵ cm⁻¹ s⁻¹
- 10 weeks
- 50% duty factor
- => 10⁹ minimum bias events
- Background and signal distributions scaled to 10⁹ min. bias events
- Statistical uncertainties estimated as sqrt(S+B)

Elliptic flow of neutral mesons

- Significant v₂ values predicted for all particle species
- As expected, elliptic flow of π^{\pm} and π^{0} mesons is very similar
- There is a clear mass ordering of v₂ as function of p_T: eta meson v₂ (intermediate mass range) is between proton and pion v₂
- First estimates: need O(10⁹) semi-central (20-40%) events to measure neutral pion v₂ with ~10% precision in 0.8 < p_T < 2 GeV/c

Conclusions and outlook

- Photons and neutral mesons valuable probes of dense hadronic matter produced in heavy ion collisions
- Photon conversion method is a powerful tool to measure photon and neutral meson spectra
- Standard MPD configuration allows one to reconstruct π^0 mesons via conversions already with the first year data taking
- Ongoing efforts to optimize neutral meson reconstruction efficiency
- Next:
 - Feasibility of thermal photon reconstruction
 - Azimuthal flow of photons and neutral mesons
 - Feasibility studies on the dedicated convertor

BACKUP

Event plane determination with FHCal

2 <|ŋ| < 5

• Event plane:

$$\Psi_{1,EP}^{L(R)} = \arctan\left(\frac{\sum E_i \sin \varphi_i}{\sum E_i \cos \varphi_i}\right)$$

v_n corrected for event plane resolution effects:

$$v_n\{\Psi_{1,EP}\} = \frac{\langle \cos n(\varphi - \Psi_{1,EP}) \rangle}{R_{1,EP}}$$

21

PHSD predictions vs SPS data

