Relaxation to equilibrium at NICA: hydro-like behavior, EOS and shear viscosity-to-entropy ratio

E. Zabrodin

in collaboration with L. Bravina, M. Teslyk, and O. Vitiuk

The XXIV International Workshop High Energy Physics and Quantum Field Theory Sochi, Russia, 22-29.09.2019

Motivation

E. Zabrodin , M. Teslyk , O. Vitiuk , L. Bravina

Shear viscosity in Au+Au cllisions at BES/FAIR/NICA

$$\partial_{\mu} \mathbf{N}^{\mu}(\mathbf{x}) = \mathbf{0}$$

 $\partial_{\mu} \mathbf{T}^{\mu
u} = \mathbf{0}; \ \mu, \nu = \mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{3}$

Number of variables – 6

$$\mathbf{T}^{\mu\nu} = \underbrace{(\varepsilon + \mathbf{P})\mathbf{u}^{\mu}\mathbf{u}^{\nu} - \mathbf{P}\mathbf{g}^{\mu\nu}}_{\mathbf{V}}$$

(2)

Number of equations – 4

Missing equations:

(1) EOS, that links energy density and pressure

$$\begin{array}{l} \diamondsuit \ \ \, \textbf{Four-velocity}\\ \mathbf{u}^{\mu}=(\gamma,\gamma\vec{\mathbf{v}}); \ \vec{\mathbf{v}}\equiv\frac{\vec{p}}{\mathbf{p}^0}; \ \gamma=\frac{1}{\sqrt{1-(\vec{\mathbf{v}})^2}}\\ \textbf{thus}\\ \\ \mathbf{u}^{\mu}\mathbf{u}_{\mu}=\mathbf{1} \end{array}$$

Pre-equilibrium: Homogeneity of baryon matter

L.Bravina et al., PRC 60 (1999) 024904

The local equilibrium in the central zone is quite possible

Equilibration in the Central Cell

 $\mathbf{t}^{cross} = 2\mathbf{R}/(\gamma_{cm} \beta_{cm})$ $\mathbf{t}^{eq} \ge$

$$\geq t^{cross} + \Delta z/(2\beta_{cm})$$

L.Bravina et al., PLB 434 (1998) 379; JPG 25 (1999) 351 Kinetic equilibrium: Isotropy of velocity distributions Isotropy of pressure

Thermal equilibrium: Energy spectra of particles are

described by Boltzmann distribution

$$\frac{dN_i}{4\pi pEdE} = \frac{Vg_i}{(2\pi\hbar)^3} \exp\left(\frac{\mu_i}{T}\right) \exp\left(-\frac{E_i}{T}\right)$$

Chemical equlibrium:

Particle yields are reproduced by SM with the same values of $(T, \ \mu_B, \ \mu_S)$:

$$N_i = \frac{Vg_i}{2\pi^2\hbar^3} \int_0^\infty p^2 dp \exp\left(\frac{\mu_i}{T}\right) \exp\left(-\frac{E_i}{T}\right)$$

Statistical model of ideal hadron gas

Kinetic Equilibrium

Isotropy of pressure

L.Bravina et al., PRC 78 (2008) 014907

Pressure becomes isotropic for all energies from 11.6 AGeV to 158 AGeV

Thermal and Chemical Equilibrium

Thermal and chemical equilibrium seems to be reached

Equation of State in the cell

Conclusions (part 1)

- MC models favor early pre-equilibration of hot and dense nuclear matter already at t ≈ 2 fm/c
- After that the expansion of matter in the central cell proceeds isentropically with constant S/ρ_B (hydro!)
- The EOS has a simple form: P/ε = const (hydro!) even at far-from-equilibrium stage
- The speed of sound C²_s varies from 0.12 (AGS) to 0.14 (40 AGeV), and to 0.15 (SPS & RHIC) => saturation
- Good agreement between the cell and box results

Motivation

taken from

R.Rapp, H.Hees. arXiv:0803.0901[hep-ph]

- P.Kovtun, D.T.Son, O.Starinets.
 PRL 94, 111601 (2005)
- A.Muronga. PRC 69, 044901 (2004)
- L.Csernai, J.Kapusta, L.McLerran.
 PRL 97, 152303 (2006)
- P.Romatschke, U.Romatschke. PRL 99, 172301 (2007)
- S.Plumari et al. PRC 86, 054902 (2012)
- ALICE collaboration, CERNCOURIER (14.10.2016)

۰

...

E. Zabrodin , M. Teslyk , O. Vitiuk , L. Bravina Shear viscosity

Shear viscosity in Au+Au cllisions at BES/FAIR/NICA

イロト イ押ト イヨト イヨト

Theory

Green-Kubo: shear viscosity η may be defined as:

$$\eta(t_0) = \frac{1}{\hbar} \frac{V}{T} \int_{t_0}^{\infty} \mathrm{d}t \langle \pi(t) \pi(t_0) \rangle_t = \frac{\tau}{\hbar} \frac{V}{T} \langle \pi(t_0) \pi(t_0) \rangle,$$

where

$$\langle \pi(t) \pi(t_0) \rangle_t = \frac{1}{3} \sum_{\substack{i,j=1\\i \neq j}}^3 \lim_{t_{\max} \to \infty} \frac{1}{t_{\max} - t_0} \int_{t_0}^{t_{\max}} dt' \pi^{ij} (t+t') \pi^{ij} (t')$$
$$= \langle \pi(t_0) \pi(t_0) \rangle \exp\left(-\frac{t-t_0}{\tau}\right)$$

with

$$\pi^{ij}(t) = \frac{1}{V} \sum_{\text{particles}} \frac{p^{i}(t) p^{j}(t)}{E(t)}$$

 t_0 : initial cut-off time to start with

E. Zabrodin , M. Teslyk , O. Vitiuk , L. Bravina

Shear viscosity in Au+Au cllisions at BES/FAIR/NICA

→ Ξ → → Ξ →

990

=

< 口 > < 同 >

- UrQMD calculations, central Au+Au collisions at energies *E* ∈ [10, 20, 30, 40] AGeV of the projectile, 51200 events per each
- central cell $5 \times 5 \times 5 \text{ fm}^3 \Rightarrow \{\varepsilon, \rho_B, \rho_S\}$ at times $t_{cell} = 1 \div 20 \text{ fm/c}$
- statistical model (SM): $\{\varepsilon, \rho_B, \rho_S\} \Rightarrow \{T, s, \mu_B, \mu_S\}$

• UrQMD box calculations at $\{\varepsilon, \rho_{\rm B}, \rho_{\rm S}\}$ for every energy and cell time $t_{\rm cell}$ from cell calculations, 80 points in total, 12800 events per each

 $\rho_{\rm B}$ is included as $N_p: N_n = 1:1$ $\rho_{\rm S}$ is included via kaons $K^$ box size: $10 \times 10 \times 10$ fm³ box boundaries: transparent

 π^{ij}(t) data extraction: t = 1 ÷ 1000 fm/c in box time, all types of hadrons are taken into account

୬ହନ

Box with periodic boundary

Initialization: (i) nucleons are uniformly distributed in a configuration space; (ii) Their momenta are uniformly distributed in a sphere with random radius and then rescaled to the desired energy density.

M.Belkacem et ab, PRC 58, 1727 (1998)

Model employed: UrQMD 55 different baryon species (N, Δ , hyperons and their resonances with $m \leq 2.25 \text{ GeV/c}^2$) 32 different meson species (including resonances with $m \leq 2 \text{ GeV/c}^2$) and their respective antistates. For higher mass excitations a string mechanism is invoked.

Test for equilibrium: particle yields and energy spectra

Box: particle abundances

Saturation of yields after a certain time. Strange hadrons are saturated longer than others (at not very high energy densities)

BOX: ENERGY SPECTRA AND MOMENTUM

Nearly the same temperature and complete isotropy of dN/dp_T

Cell + SM

Dependence of $\varepsilon, \rho_B, \rho_S$ (from cell) and of T, μ_B, μ_S (from SM) on t_{cell}

< 🗆 🕨

996

=

=

SM, Boltzmann entropy s

Dynamics of Boltzmann entropy density s and of $s/\rho_{\rm B}$ in cell

E. Zabrodin , M. Teslyk , O. Vitiuk , L. Bravina Shear viscosity in Au+Au cllisions at BES/FAIR/NICA

< □ ▶

200

=

=

Results: $\langle \pi(t) \pi(t_0) \rangle_t$ at $E \in [10, 20, 30, 40]$ AGeV

Time dependence of correlators $\langle \pi(t) \pi(t_0) \rangle_t$ $t_0 = 300 \text{ fm/c}$ $t_{\text{cell}} \in \{1 \div 20\} \text{ fm/c}$

E. Zabrodin , M. Teslyk , O. Vitiuk , L. Bravina Shear viscosity in Au+Au cllisions at BES/FAIR/NICA

< < >>

.≣ ▶

Results: $\langle \pi(t) \pi(t_0) \rangle_t$ at fixed t_{cell}

Time dependence of correlators $\langle \pi(t) \pi(t_0) \rangle_t$ Subplot: the same but at linear scale $t_0 = 300 \text{ fm/c}$ $t_{\text{cell}} = 7 \text{ fm/c}$

E. Zabrodin , M. Teslyk , O. Vitiuk , L. Bravina Shear viscosity in Au+Au cllisions at BES/FAIR/NICA

Dependence of τ on t_0

E. Zabrodin , M. Teslyk , O. Vitiuk , L. Bravina Shear viscosity in Au+Au cllisions at BES/FAIR/NICA

< □ > < □ > < 三

.≣ . ▶

-

=

Results: au from the fit

Dependence of τ_{fit} on t_0

《曰》 《圖》 《圖》 《圖》

=

Results: Comparison of τ_{int} and τ_{fit}

E. Zabrodin , M. Teslyk , O. Vitiuk , L. Bravina Shear viscosity in Au+Au cllisions at BES/FAIR/NICA

< 🗆 🕨

∃ >

=

Results: viscosity $\eta(t_0)$

Dependence of η on t_0

E. Zabrodin , M. Teslyk , O. Vitiuk , L. Bravina Shear viscosity in Au+Au cllisions at BES/FAIR/NICA

《曰》 《聞》 《臣》 《臣》

200

=

Results: viscosity $\eta(t_{cell})$

Dynamics of η in cell All curves sit on the top of each other for $t_{cell} \ge 7$ fm/c

< 🗆

996

Ξ.

I

Results: η/s_{SM}

E. Zabrodin , M. Teslyk , O. Vitiuk , L. Bravina Shear viscosity in Au+Au cllisions at BES/FAIR/NICA

< 🗆 🕨

920

=

=

Dynamics of η/s_{SM} in cell η/s increases with time for $t_{cell} \ge 6$ fm/c for all four energies Minimum - for 10 AGeV, corresponding to 4.5 GeV in c.m. frame

Entropy density of nonequilibrium state

Entropy density

$$s = -\sum_{i} \frac{g_i}{(2\pi\hbar)^3} \int_0^\infty f_i(p, m_i) \left[\ln f_i(p, m_i) - 1\right] d^3p$$

Microscopic distribution function

$$f_i^{\rm mic}(p) = \frac{(2\pi\hbar)^3}{Vg_i} \frac{dN_i}{d^3p}$$

Dynamics of $\eta/s_{noneq.}$ in cell η/s drops with time for $t_{cell} \le 6$ fm/c. Then it increases for all four energies Pronounced minima for all reactions

E. Zabrodin , M. Teslyk , O. Vitiuk , L. Bravina Shear viscosity in Au+Au cllisions at BES/FAIR/NICA

Results: η / s_{noneq} .

Dynamics of $\eta/s_{noneq.}$ in cell η/s increases with temperature drop at $t_{cell} \ge 6$ fm/c for all four energies

Dynamics of $\eta/s_{noneq.}$ in cell η/s increases with increase of μ_B for $t_{cell} \ge 6$ fm/c for all four energies Clear minimum for 10 AGeV

Results: η / s_{noneq} .

Dynamics of $\eta/s_{noneq.}$ in cell η/s increases with drop of μ_s for $t_{cell} \ge 6$ fm/c for all four energies

Reliability of obtained results

Conclusions

- data from central cell of UrQMD calculations are used as input for SM to calculate temperature *T* and entropy density *s*, and for UrQMD box calculations to estimate shear viscosity *η*
- box data are taken within the range 200 ≤ t₀ ≤ 800 fm/c because:
 - values at $t_0 < 200 \text{ fm/c}$ are distorted by the initial fluctuation in the box
 - values at $t_0 > 800$ fm/c may be disturbed by the analog of Brownian motion
- it is shown that for all four tested energies η and s in the cell drop with time
- ratios η/s reach minima about 0.3(0.5) at t ≈ 5 fm/c for all energies. Then, the ratios rise to 1.0 ÷ 1.2 (1.3 ÷ 1.6) at t = 20 fm/c
- this increase is accompanied by the simultaneous rise of μ_B and drop of both T and μ_S in the cell