# New methods of distinguishing the associated Zy production

N.L.Belyaev, E.Yu.Soldatov

National Research Nuclear University "MEPhI"



QFTHEP Conference, Sochi, Russia 22-29 September 2019

#### The new physics searches

Two main methods of beyond Standard Model "new physics" search at the collider experiments:

> Direct search – the search for new particles in the collision data ("unknown unknowns")

E. Soldatov

Indirect search – the precision measurement of the known processes, which can be slightly changed by new physics beyond SM of the unachieved energy scale ("unknown knowns")



QFTHEP'19, Moscow, Russia

#### **Overview of CMS EXO results**

22-29 Sep. 2019

Nº 2

#### **Indirect new physics searches**



Indirect searches are also ongoing. These searches will have significant profit from the increase of luminosity w/o increase of collision energy.

The hottest topics are:

- Flavor physics (especially B physics) some deviations from SM already reported
- Studies of electroweak boson interactions (VBF, VBS, multibosons)
- Top physics

These measurements increase the precision of SM tests. Theory predictions also can be very accurate: NLO, NNLO, ...

#### E. Soldatov

QFTHEP'19, Moscow, Russia

## Why Zγ?

- Associated Zγ production can be used for the study of anomalous triple gauge couplings (aTGC)
- Neutral vertices Zγγ and ZZγ are forbidden in SM at tree level, so its possible existence is the clear sign of new physics
- Neutrino channel of Z boson decay provides significantly bigger branching than charged lepton channels (vv/ee ~ 6) and much better background control than hadronic channel (dijet final state has huge background contamination at hadron collider experiments)



## Why Zy: anomalous couplings formalism and public results

Vertex functions formalism (e.g. for ZZγ vertex):

$$\Gamma_{Z\gamma Z}^{\alpha\beta\mu}(q_1, q_2, P) = \frac{P^2 - q_1^2}{M_Z^2} \left[ h_1^Z (q_2^\mu g^{\alpha\beta} - q_2^\alpha g^{\mu\beta}) + \frac{h_2^Z}{M_Z^2} P^\alpha (P \cdot q_2 g^{\mu\beta} - q_2^\mu P^\beta) + h_3^Z \varepsilon^{\mu\alpha\beta\rho} q_{2\rho} + \frac{h_4^Z}{M_Z^2} P^\alpha \varepsilon^{\mu\beta\rho\sigma} P_\rho q_{2\sigma} \right]$$

Coupling is described by eight parameters:

 $h_1^V - h_4^V$ , where V =  $\gamma$ , Z

CP-conserving: h<sub>3</sub><sup>v</sup>, h<sub>4</sub><sup>v</sup>
 (correspond to electric dipole, magnetic quadrupole vertex transition moments)

CP-violating: h<sub>1</sub><sup>v</sup>, h<sub>2</sub><sup>v</sup>
 (correspond to magnetic dipole, electric quadrupole vertex transition moments)

Non-zero (anomalous) values of the  $\mathbf{h}_i^v$  couplings lead to increase of the Z $\gamma$  cross section, <u>especially</u> for large photon transverse <u>energies</u> (or big s).

Sensitivity of experiments for the Zγγ/ZZγ vertex functions parameters (h<sub>3</sub>[Z] or "electric dipole transition moment" of Z boson) is close to the order of SM loop corrections (~10<sup>-4</sup>-10<sup>-5</sup>): [Z. Phys. C - Particles and Fields 28, 149-154 (1985)].
 This can leads also to constrain BSM models, such as SUSY.



| Parameter | Limit 95% CL                                |  |
|-----------|---------------------------------------------|--|
|           | Measured                                    |  |
| $h_3^Z$   | $(-3.2 \times 10^{-4}, 3.3 \times 10^{-4})$ |  |

E. Soldatov

QFTHEP'19, Moscow, Russia

22-29 Sep. 2019

#### **Backgrounds and current selection**

**ATLAS** selection:

| Photons                                                         | Leptons                                                           | Jets                                                                |  |  |
|-----------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------|--|--|
| $E_{\rm T} > 150 { m ~GeV}$                                     | $p_{\rm T} > 7 { m ~GeV}$                                         | $p_{\rm T} > 50 { m ~GeV}$                                          |  |  |
| $ \eta  < 2.37,$                                                | $ \eta  < 2.47(2.7)$ for $e(\mu)$ ,                               | $ \eta  < 4.5$                                                      |  |  |
| excluding $1.37 <  \eta  < 1.52$                                | excluding $1.37 <  \eta^e  < 1.52$                                | $\Delta R(\text{jet}, \gamma) > 0.3$                                |  |  |
| Event selection                                                 |                                                                   |                                                                     |  |  |
| $N^{\gamma} = 1, \ N^{e,\mu} = 0, \ E_{\rm T}^{\rm miss} > 150$ | 0 GeV, $E_{\rm T}^{\rm miss}$ signif. > 10.5 GeV <sup>1/2</sup> , | $\Delta \phi(\vec{E}_{\mathrm{T}}^{\mathrm{miss}}, \gamma) > \pi/2$ |  |  |
| Inclusive : $N_{jet} \ge 0$ , Exclusive : $N_{jet} = 0$         |                                                                   |                                                                     |  |  |

CMS selection:

$$\begin{split} & \mathsf{E}_{\mathsf{T}}[\gamma] > 175 \; \text{GeV and} \; |\, \eta[\gamma] | < 1.44 \\ & \mathsf{E}_{\mathsf{T}}[\text{miss}] > 170 \; \text{GeV} \\ & \Delta \varphi(\gamma, p_{\mathsf{T}}[\text{miss}]) > 2 \\ & \text{Lepton veto} \; (p_{\mathsf{T}} > 10 \; \text{GeV}) \\ & \Delta \varphi(\text{jet}, \; p_{\mathsf{T}}[\text{miss}]) > 0.5 \; (p_{\mathsf{T}}[\text{jet}] > 30 \; \text{GeV}) \end{split}$$

| Base selection is similar. ATLAS one is more advance | d. |
|------------------------------------------------------|----|
|------------------------------------------------------|----|

|                                     | $N_{jets} \ge 0$     | $N_{\rm jets} = 0$   |
|-------------------------------------|----------------------|----------------------|
| $N^{W\gamma}$                       | $650 \pm 40 \pm 60$  | $360 \pm 20 \pm 30$  |
| $N^{\gamma+jet}$                    | $409 \pm 18 \pm 108$ | $219 \pm 10 \pm 58$  |
| $N^{e \rightarrow \gamma}$          | $320 \pm 15 \pm 45$  | $254 \pm 12 \pm 35$  |
| $N^{\text{jet} \rightarrow \gamma}$ | $170 \pm 30 \pm 50$  | $140 \pm 20 \pm 40$  |
| $N^{Z(\ell\ell)\gamma}$             | $40 \pm 3 \pm 3$     | $26 \pm 3 \pm 2$     |
| $N_{\rm total}^{\rm bkg}$           | $1580\pm50\pm140$    | $1000 \pm 40 \pm 90$ |
| $N^{\rm sig}(\exp)$                 | $2328 \pm 4 \pm 135$ | $1710 \pm 4 \pm 91$  |
| $N_{\rm total}^{ m sig+bkg}$        | $3910\pm50\pm190$    | $2710\pm40\pm130$    |
| N <sup>data</sup> (obs)             | 3812                 | 2599                 |

| Process                                      | Estimate         |
|----------------------------------------------|------------------|
| $Z\gamma  ightarrow  u \overline{ u} \gamma$ | $41.74 \pm 6.67$ |
| $W\gamma  ightarrow \ell  u \gamma$          | $10.60\pm1.58$   |
| $W \rightarrow e \nu$                        | $7.80 \pm 1.78$  |
| Jet $\rightarrow \gamma$ misidentified       | $1.75 \pm 0.61$  |
| Beam halo                                    | $5.90 \pm 4.70$  |
| Spurious ECAL signals                        | $5.63 \pm 2.20$  |
| Rare backgrounds                             | $3.03\pm0.69$    |
| Total Expectation                            | $76.45 \pm 8.82$ |
| Data                                         | 77               |

#### $\succ$ Wy is the biggest background for that study for both of experiments.

It has two sources: a) lepton is not reconstructed/identified/out of acceptance; b) hadronic τ lepton decay.

E. Soldatov

QFTHEP'19, Moscow, Russia

22-29 Sep. 2019

## Setup for the study

- ➢ MG5 aMC samples were generated for this study (100k each)
- > <u>Pythia8</u> was used for parton showering, hadronization and underlying event
- Delphes framework was used for detector simulation (ATLAS geometry card) and particles reconstruction



#### New ideas for backgrounds suppression: Angle



#### New ideas for backgrounds suppression: missing $P_T$

Missing energy is calculated in the following way:

$$\overrightarrow{E_T}^{\text{miss}} = -\sum \overrightarrow{p_T}(i)$$

where i – photons, leptons and jets.

 $\succ$  For Z $\gamma$ , full momentum of Z is genuine missing P<sub>T</sub>. It will be not added to this formula.

 $\succ$  For Wy, only part of W momentum is genuine missing P<sub>T</sub>. Lepton will leave a trace.

The cause to be in lepton veto region: Either lepton not reconstructed/out of acceptance or it is hadronic  $\tau$  decay.

In any case it will be calculated in missing  $P_T$ : acceptance of calorimeter is much bigger (up to  $|\eta|=4.9$ ), soft jets will be also taken into account

Missing  $P_T$  will be slightly different for Z $\gamma$ . However, the best separation power will give the soft jets term:

Softjets=
$$|\overline{E_T^{miss}}| - \sum \overline{p_T^{hard}(i)}|$$

where i – hard objects: identified photons, leptons and jets with  $p_T$ >10 GeV.

E. Soldatov

#### New ideas for backgrounds suppression: missing $P_T$

Soft jets term for these two processes:



Soft jets term, GeV This observable has obvious separation power. Can be used in experimental fiducial volume definition or as a Machine Learning (ML) discriminant.

E. Soldatov

QFTHEP'19, Moscow, Russia

22-29 Sep. 2019

Nº 10

## Summary

> Indirect "new physics" searches start play the leading role.

- > Anomalous couplings search is one of the most perspective topics.
- Zγ final state (with Z decay to neutrino) is very sensitive to neutral anomalous couplings.
- > The phase space for its measurement can be optimized further.
- Couple of new observables with good separation potential from the dominant Wγ background were found:
  - $cos\left(\theta_{\vec{P}_{\gamma},\vec{P}_{t}^{miss}}\right)$
  - Softjets term p<sub>T</sub>
- The optimization is continuing. Results can be used in the experimental studies (fiducial volume definition, additional ML discriminants).

The reported study was funded by RFBR according to the research project № 18-32-20160.

E. Soldatov

QFTHEP'19, Moscow, Russia

22-29 Sep. 2019