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Introduction

Tests of the Local Realism using the Wigner inequality do not include
any dependence on time.

Tests of the Macroscopic Realism using time-dependent Leggett–
Garg inequalities require the technique of non-invasive (soft) mea-
surements.

In the current talk we propose a new time-dependent inequality for
tests of Hypothesis of Realism. These tests do not require non-
invasive measurements.
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NSC and NSIT

The ”No-signaling condition” (NSC) is written in the following form:∑
a

w(a, bβ , . . . |A, B, . . .) = w(bβ , . . . |B, . . .),

where A is an observable selected for measurement, a is the measured
value of the observable A, and

∑
a

sums all possible values of the

observable A. The same notation is used for the observable B.

The ”No-signaling in time” condition (NSIT) demands that the
probability w(qj , qi , . . . | tj , ti , . . .) of measurement of an observable
Q at times ti , tj > ti and so on, does not depend on the state of
the observable Q at time tk 6= {ti , tj , . . .}. Denoting Q(ti ) as qi , no-
signaling in time condition may be written as follows.∑

qk

w(qj , qk , qi , . . . | tj , tk , ti , . . .) = w(qj , qi , . . . |tj , ti , . . .).
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Hypothesis of Realism

1) At any time ti a system is in a “real physical state” which exists
impartially and independently of any observer. “Real physical states”
are distinguished from each other by the values of observables that
characterize the system under study. We do not suppose these values
to be jointly measurable by any macroscopic device.

2) Observable physical states of a system are distinguished by the
values of variables which can be jointly measurable in the system at
time ti .

3) For the considered system the NSIT condition and/or NSC are
hold.

4) The experimentalist has free will to plan, perform, and analyze
the results of the experiments on the system.
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Test of the hypothesis of realism – I
Consider a physical system which consists of two subsystems, “1”
and “2”. In each of the subsystems there is a variable Q(η)(t), where
η = {1, 2} is the subsystem index. At any time ti both variables
Q(η)(t) must have only a two defined values q(η)

i = ±1 (so called
dichotomic variables).

Let us consider three moments of time, t3 > t2 > t1. At time t1 there
is an anticorrelation between dichotomic variables Q(1)(t) and Q(2)(t)
like Q(1)(t1) = −Q(2)(t1), or

q(1)
1± = − q(2)

1∓.

If at time t1 a measurement of Q(η)(t1) occured, then at times t2
and t3 there is no correlation between Q(1)(t) and Q(2)(t).

If at time t1 there is no measurement of Q(η)(t1), then the anticorre-
lation will hold at t2. Note, that by definition at t3 the anticorrelation
between the observables Q(1)(t) and Q(2)(t) cannot be observed
under any conditions.
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Test of the hypothesis of realism – II
We introduce a space of elementary outcomes ω(L̃G) ∈ Ω(L̃G), which
consists of the aggregates

{q(2)
3α, q(2)

2 β , q(2)
1 γ , q(1)

3α′ , q(1)
2 β′ , q(1)

1 γ′=−γ},

where the indices {α, β, γ, α′, β′, γ′} = {+, −}, and the anticorrelation
condition is taken into account. Denote an elementary event as:

K(L̃G)

q(2)
3 α, q

(2)
2 β , q

(2)
1 γ , q

(1)

3 α′ , q
(1)

2 β′ , q
(1)

1 γ′=−γ

⊆ Ω(L̃G)

.

The full aggregate of such events forms a σ–algebra F (L̃G). On(
Ω(L̃G), F (L̃G)

)
let us introduce a non-negative σ–additive measure

w
(
ω(L̃G), q(2)

3α, q(2)
2 β , q(2)

1 γ , q(1)
3α′ , q(1)

2 β′ , q(1)
1 γ′=−γ | t3, t2, t1

)
. The triplet(

Ω(L̃G), F (L̃G), w(. . .)
)
is a probabilistic model, which will be used

to test the hypothesis of realism.
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Test of the hypothesis of realism – III

We introduce the first event:

K(L̃G)
32 = K(L̃G)

q(2)
3+ , q

(2)
2−, q

(2)
1+ , q

(1)
3+ , q

(1)
2+ , q

(1)
1−
∪ K(L̃G)

q(2)
3+ , q

(2)
2−, q

(2)
1+ , q

(1)
3−, q

(1)
2+ , q

(1)
1−
∪

∪ K(L̃G)

q(2)
3+ , q

(2)
2−, q

(2)
1−, q

(1)
3+ , q

(1)
2+ , q

(1)
1+

∪ K(L̃G)

q(2)
3+ , q

(2)
2−, q

(2)
1−, q

(1)
3−, q

(1)
2+ , q

(1)
1+

.

In this event we takes into account that the variables Q(1)(t) and
Q(2)(t) are anticorrelated at time t1, as well as at time t2, because
there has been no measurement at t1. Then, taking into account
NSIT, we may write:

w
(
q(2)

3+ , q(1)
2+ | t3, t2

)
=

∑
ω

(L̃G)
32 ∈K(L̃G)

32

∑
q(1)
3

∑
q(1)
1

∑
q(2)
1

δ−q(1)
1 q(2)

1

w
(
ω

(L̃G)
32 , q(2)

3 +, q(2)
2−, q(2)

1 , q(1)
3 , q(1)

2 +, q(1)
1 | t3, t2, t1

)
,

where δij is the Kronecker simbol.
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Test of the hypothesis of realism – IV

Let us introduce second event:

K(L̃G)
31 = K(L̃G)

q(2)
3+ , q

(2)
2+ , q

(2)
1−, q

(1)
3+ , q

(1)
2+ , q

(1)
1+

∪ K(L̃G)

q(2)
3+ , q

(2)
2+ , q

(2)
1−, q

(1)
3+ , q

(1)
2−, q

(1)
1+

∪

∪ K(L̃G)

q(2)
3+ , q

(2)
2+ , q

(2)
1−, q

(1)
3−, q

(1)
2+ , q

(1)
1+

∪ K(L̃G)

q(2)
3+ , q

(2)
2+ , q

(2)
1−, q

(1)
3−, q

(1)
2−, q

(1)
1+

∪

∪ K(L̃G)

q(2)
3+ , q

(2)
2−, q

(2)
1−, q

(1)
3+ , q

(1)
2+ , q

(1)
1+

∪ K(L̃G)

q(2)
3+ , q

(2)
2−, q

(2)
1−, q

(1)
3+ , q

(1)
2−, q

(1)
1+

∪

∪ K(L̃G)

q(2)
3+ , q

(2)
2−, q

(2)
1−, q

(1)
3−, q

(1)
2+ , q

(1)
1+

∪ K(L̃G)

q(2)
3+ , q

(2)
2−, q

(2)
1−, q

(1)
3−, q

(1)
2−, q

(1)
1+

.

For this event we define probability:

w
(
q(2)

3+ , q(1)
1+ | t3, t1

)
=

∑
ω

(L̃G)
31 ∈K(L̃G)

31

∑
q(1)
3

∑
q(1)
2

∑
q(2)
2

w
(
ω

(L̃G)
31 , q(2)

3 +, q(2)
2 , q(2)

1−, q(1)
3 , q(1)

2 , q(1)
1 + | t3, t2, t1

)
.
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Test of the hypothesis of realism – V

Let us introduce third event:

K(L̃G)
12 = K(L̃G)

q(2)
3+ , q

(2)
2+ , q

(2)
1+ , q

(1)
3+ , q

(1)
2+ , q

(1)
1−
∪ K(L̃G)

q(2)
3+ , q

(2)
2+ , q

(2)
1+ , q

(1)
3−, q

(1)
2+ , q

(1)
1−
∪

∪ K(L̃G)

q(2)
3+ , q

(2)
2−, q

(2)
1+ , q

(1)
3+ , q

(1)
2+ , q

(1)
1−
∪ K(L̃G)

q(2)
3+ , q

(2)
2−, q

(2)
1+ , q

(1)
3−, q

(1)
2+ , q

(1)
1−
∪

∪ K(L̃G)

q(2)
3−, q

(2)
2+ , q

(2)
1+ , q

(1)
3+ , q

(1)
2+ , q

(1)
1−
∪ K(L̃G)

q(2)
3−, q

(2)
2+ , q

(2)
1+ , q

(1)
3−, q

(1)
2+ , q

(1)
1−
∪

∪ K(L̃G)

q(2)
3−, q

(2)
2−, q

(2)
1+ , q

(1)
3+ , q

(1)
2+ , q

(1)
1−
∪ K(L̃G)

q(2)
3−, q

(2)
2−, q

(2)
1+ , q

(1)
3−, q

(1)
2+ , q

(1)
1−
.

For last event we define probability:

w
(
q(2)

1+ , q(1)
2+ | t2, t1

)
=

∑
ω

(L̃G)
12 ∈K(L̃G)

12

∑
q(2)
2

∑
q(2)
3

∑
q(1)
3

w
(
ω

(L̃G)
12 , q(2)

3 , q(2)
2 , q(2)

1 +, q(1)
3 , q(1)

2 +, q(1)
1− | t3, t2, t1

)
.
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Test of the hypothesis of realism – VI

The sum of the second and third events defines the event

K(L̃G)
321 = K(L̃G)

31 ∪ K(L̃G)
12 .

The event K(L̃G)
321 also contains the event K(L̃G)

32 .

Taking into account the non-negativity of the probability we find
that for event K(L̃G)

321 the following is satisfied:

w
(
q(2)
3+ , q(1)

2+ | t3, t2
)
≤ w

(
q(2)

3+ , q(1)
1+ | t3, t1

)
+ w

(
q(2)
1+ , q(1)

2+ | t2, t1
)
.

This main inequality is obtained using the hypothesis of realism and
NSIT condition.
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An example of inequality violation – I

Consider a pair of neutral pseudoscalar mesons, which at time t1 = 0
are in Bell-state∣∣Ψ+

〉
=

1√
2

( ∣∣∣M(2)
〉
⊗
∣∣∣ M̄(1)

〉
+
∣∣∣ M̄(2)

〉
⊗
∣∣∣M(1)

〉)
.

This state is anticorrelated by flavor of the pair, but is correlated
by CP-parity (defined as

∣∣∣M(i)
1

〉
and

∣∣∣M(i)
2

〉
) and mass/lifetime

(defined as
∣∣∣M(i)

H

〉
and

∣∣∣M(i)
L

〉
).

Let us choose as an observable Q(η)(t) the flavor of pseudoscalar
meson. Q = +1, corresponds to meson with flavor ”M”, while Q = −1
– to meson flavor ”M̄”.
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An example of inequality violation – II
For the subsequent calculations let us use the following definitions:

∆m = mH −mL, ∆Γ = ΓH − ΓL, Γ =
1
2

(ΓH + ΓL).

The probability w
(
q(2)
3+ , q(1)

2+ | t3, t2
)
may be written as:

w
(
q(2)
3+ , q(1)

2+ | t3, t2
)

=
1
4

e−2Γt3 ch
(

∆Γ ∆t32

2

)
[
ch
(

∆Γ (t2 + t3)

2

)
− cos (∆m (t2 + t3))

]
.

In analogy we obtain:

w
(
q(2)
3+ , q(1)

1+ | t3, t1
)

=
1
4

e−2Γt3 ch
(

∆Γ ∆t3
2

) [
ch
(

∆Γ t3
2

)
−

− cos (∆m t3)
]
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An example of inequality violation – III
and

w
(
q(2)
1+ , q(1)

2+ | t2, t1
)

=
1
4

e−2Γt3 ch
(

∆Γ ∆t32

2

)
ch
(

∆Γ t3
2

)
[
ch
(

∆Γ t2
2

)
− cos (∆m t2)

]
.

Denote

κ =
∆ Γ

2 ∆ m
, α = ∆m t3, β = ∆m t2.

Then we find the following inequality:[
ch(κ (α + β)) − cos(α + β)

]
ch(κ (α− β)) ≤

≤
[
ch(κα) − cos(α)

]
ch(κα) +

+
[
ch(κβ) − cos(β)

]
ch(κ (α− β)) ch(κα).
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An example of inequality violation – IV

In order to simplify the above inequality let us consider Bs B̄s–meson
pairs. For Bs–meson ∆Γ ≈ −6.0× 10−11 MeV and ∆m ≈ 1.2× 10−8

MeV. Hence κ ≈ −2.5× 10−3.

I.e. the violation of above inequality may be considered in κ = 0
regime. In this case our inequality turns into a simple relation:

cos(α) + cos(β) − cos(α + β) ≤ 1

for α > β > 0. Choose α =
3π
8

and β =
3π
10

. Then cosα ≈ 0.383,
cosβ ≈ 0.588, and cos(α + β) ≈ −0.522, which leads to violation of
current inequality.
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Conclusion

1. We obtain the inequality

w
(
q(2)
3+ , q(1)

2+ | t3, t2
)
≤ w

(
q(2)
3+ , q(1)

1+ | t3, t1
)

+ w
(
q(2)
1+ , q(1)

2+ | t2, t1
)
.

for test of the Hypothesis of Realism.
2. We stress the fact that derivation of this inequality requires

the NSIT condition.
3. We have shown that this inequality is violated in quantum

mechanics.
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Thank you!
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