On photon splitting in Lorentz-violating QED

P. Satunin in collaboration with K. Astapov and D. Kirpichnikov

INR Institute for Nuclear Research of the Russian Academy of Sciences

based on: arXiv:1903.08464 [hep-ph] JCAP 1904 (2019) 054 arXiv:1906.08221 [astro-ph.HE]

23 September 2019

Motivation of Lorentz Invariance violation

- Different approaches to quantum gravity
 - Discrete spacetime, loop quantum gravity, non-commutative geometry e.t.c. *Gambini, Pullin 1999*

Douglas, Nekrasov, 2001

• Modifications of general relativity with large space derivatives (Hořava-Lifshitz e.t.c.) *Hořava 2009*

Blas, Pujolas, Sibiryakov 2010

...

- Phenomenologically in non-gravity sector in the framework of EFT
 - Special type of LV (preserving other symmetries, motivations to concrete QG approaches)

For example, $E^2 = m^2 + p^2(1 + \delta) \pm \frac{p^4}{M_{IV}^2} \pm ...$

• The most general type — Standard Model Extension (SME)

Kostelecky, Colladay 1998

- Accurate measurements in the labs on the Earth Michelson-Morley-type experimiments, fine structure measurements..
- Observations in high-energy astrophysics:
 - Time-of-flight measurements (photons, neutrino, gravity waves..)
 - Modifications of cross-sections for some particle reactions, crutial to astrophysical processes (photon decay, modification of shower formation..)
- Accumulated effects in cosmology (structure grows e.t.c.)

Summary:

Data tables: Kostelecky, Russel, 2008-2018. arXiv: 0801.0287

The model

LV: extra term quartic on spacial derivative, suppressed by LV mass scale M_{LV} .

$$\mathcal{L}_{QED}^{LV} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} \mp \frac{1}{2M_{LV}^2} F_{ij} \Delta^2 F^{ij} + i\bar{\psi}\gamma^{\mu} D_{\mu}\psi - m\bar{\psi}\psi.$$

Modified dispersion relation

$$E_{\gamma}^2 = p_{\gamma}^2 \pm rac{p_{\gamma}^4}{M_{LV}^2}$$

- The similar dispersion relation may be considered for electrons. The constraint on LV mass scale $M_{LV,e} > 2 \times 10^{16}$ GeV is much better than for photons. Liberati et.al., 2012
- Dispersion relations like $E^2 = p^2 \pm \frac{p^3}{M_{LV,(1)}}$ are also studied. However, $M_{LV,(1)}$ is constrained at the level M_{pl} or higher; CPT is also violated.
- Quartic LV term may be generated as loop correction from possible quadratic LV in fermions *Cambiaso Lehnert Potting 2014, P.S. 2018*

Constraints on M_{LV} for photons

$$\mathcal{L}_{QED}^{LV} = \mathcal{L}_{QED}^{LI} \mp \frac{1}{2M_{LV}^2} F_{ij} \Delta^2 F^{ij} \qquad \leftrightarrow \qquad E^2 = p^2 \pm \frac{p^4}{M_{LV}^2}$$

Photon time of flight constraints (both signs \pm) (95% CL)

AGN: $M_{LV} > 7.3 \times 10^{10} \text{ GeV}$ GRB: $M_{LV} > 1.3 \times 10^{11} \text{ GeV}$

H.E.S.S. coll. 2019

HESS coll 2019

Fermi-LAT coll. 2013

Subluminal LV — sign minus
$$E^2 = p^2 - \frac{p^4}{M_{ev}^2}$$
 (95% CL)

• Extragalactic photon absorption on EBL $M_{LV} > 7.8 \cdot 10^{11} \text{ GeV}$

• No suppression of atmosphere shower formation (HEGRA: E = 75 TeV, 2.7σ) $M_{LV} > 2.1 \cdot 10^{11}$ GeV

Rubtsov, P.S., Sibiryakov 2017

(Tibet:
$$E = 140 \text{ TeV}, 5\sigma$$
) $M_{LV} > 5.7 \cdot 10^{12} \text{ GeV}$ P.S. 2019

Constraints on M_{LV} for photons: Superluminal LV

Superluminal LV — sign plus in disp. relation
$$E^2 = p^2 + \frac{p^4}{M_{IV}^2}$$

Photon decay $\gamma \rightarrow e^+e^-$

- Forbidden in LI, but allowed in LV if the photon energy exceed a certain threshold. *Coleman, Glashow 1997*
- If effective photon mass $m_{\gamma,eff}^2 \equiv E^2 p^2 \geq (2m_e)^2$ reaction is kinemnatically allowed!
- The constraint (photons from Crab nebula) (HEGRA: $E = 75 \text{ TeV}, 2.7\sigma$) $M_{LV} > 2.8 \times 10^{12} \text{ GeV}, 95\% \text{ CL}.$

イロト 不得下 イヨト イヨト

If $m_{\gamma,eff} < 2m_e$ photon decay $\gamma \to e^+e^-$ is forbidden but loop process of photon splitting $\gamma \to n\gamma$ may be allowed

The photon splitting

$$\mathcal{L}_{QED}^{LV} = \mathcal{L}_{QED}^{LI} - \frac{1}{2M_{LV}^2} F_{ij} \Delta^2 F^{ij} \qquad \leftrightarrow \qquad E^2 = p^2 + \frac{p^4}{M_{LV}^2}$$

- Photon splitting $\gamma \rightarrow n\gamma$ is kinematically allowed whenever the photon dispersion relation is superluminal (sign plus in dispersion relation)
- Splitting to two photons $\gamma \to 2\gamma$ do not occur due to the Furry theorem
- The main splitting process is $\gamma
 ightarrow 3\gamma$

Far from pair production threshold Euler-Heisenberg effective Lagrangian may be used

$$\mathcal{L}_{E-H} = \frac{2\alpha^2}{45m_e^4} \left[\left(\frac{1}{2} F_{\mu\nu} F^{\mu\nu} \right)^2 + 7 \left(\frac{1}{8} \epsilon^{\mu\nu\rho\sigma} F_{\mu\nu} F_{\rho\sigma} \right)^2 \right] \,.$$

The width of of photon splitting in a similar model was estimated by Gelmini Nussinov Yaguna 2005

- Authors used notation of effective photon mass for dispersion relation $E^2 = p^2 + \frac{p^3}{M_{LV,(1)}}$
- They estimated the decay width of a "massive photon" in the rest frame, followed by subsequent boost to laboratory frame
- The estimation for the decay width (for quartic disp.relation):

$$\Gamma(\gamma
ightarrow 3\gamma) \sim 10^{-20} \, rac{E_{\gamma}^{19}}{m_e^8 M_{LV}^{10}}.$$

- 50 TeV photons from Crab Nebula detected \rightarrow estimated constraint $M_{LV} > 10^{13}$ GeV.
- More precise calculation seems to be necessary

8 / 19

Photon splitting calculation. The matrix element.

Kinematics

k k k

Angles between outgoing photons are assumed to be small.

$$\mathcal{L}_{E-H} = \frac{2\alpha^2}{45m_e^4} \left[\left(\frac{1}{2}F_{\mu\nu}F^{\mu\nu}\right)^2 + 7\left(\frac{1}{8}\epsilon^{\mu\nu\rho\sigma}F_{\mu\nu}F_{\rho\sigma}\right)^2 \right]$$

We factorize polarization vectors in the matrix element (w/o factor $\frac{2\alpha^2}{45m_e^4}$)

$$\mathcal{M} = \mathcal{M}_{\mu\nu\rho\lambda}(k_1, k_2, k_3, k) \times \varepsilon_{\mu}(k_1)\varepsilon_{\nu}(k_2)\varepsilon_{\rho}(k_3)\varepsilon_{\lambda}^*(k).$$

$$\mathcal{M}_{\lambda_1\lambda_2\lambda_3\lambda} = \mathcal{A}_{\lambda_1\lambda_2\lambda_3\lambda} + \frac{7}{16}\tilde{\mathcal{A}}_{\lambda_1\lambda_2\lambda_3\lambda}.$$

$$\begin{split} A_{\lambda_1\lambda_2\lambda_3\lambda} &= 8(T_{\lambda_1\lambda_2}(k_1,k_2)T_{\lambda_3\lambda}(k_3,k) + T_{\lambda_1\lambda_3}(k_1,k_3)T_{\lambda_2\lambda}(k_2,k) + T_{\lambda_1\lambda}(k_1,k)T_{\lambda_3\lambda_2}(k_3,k_2)), \\ \tilde{A}_{\lambda_1\lambda_2\lambda_3\lambda} &= 8(\tilde{T}_{\lambda_1\lambda_2}(k_1,k_2)\tilde{T}_{\lambda_3\lambda}(k_3,k) + \tilde{T}_{\lambda_1\lambda_3}(k_1,k_3)\tilde{T}_{\lambda_2\lambda}(k_2,k) + \tilde{T}_{\lambda_1\lambda}(k_1,k)\tilde{T}_{\lambda_3\lambda_2}(k_3,k_2)). \\ T_{\mu\nu}(k,p) &= 2(pk)g_{\mu\nu} - 2p_{\mu}k_{\nu}, \qquad \tilde{T}_{\mu\nu}(k,p) = -4k^{\rho}p^{\lambda}\epsilon^{\mu\nu\rho\lambda}. \\ &= -4k^{\rho}p^{\lambda}\epsilon^{\mu\nu\rho\lambda}. \end{split}$$

Photon splitting calculation. The matrix element.

Squared Matrix element:

$$\overline{|\mathcal{M}|^{2}} = \frac{1}{2} \sum_{\rhools} \mathcal{M}^{*} \mathcal{M} = \mathcal{M}^{*}_{\alpha\beta\gamma\delta} \mathcal{M}_{\mu\nu\rho\lambda} \sum_{s_{1}} \varepsilon^{*(s_{1})}_{\alpha}(k_{1}) \varepsilon^{(s_{1})}_{\mu}(k_{1}) \sum_{s_{2}} \varepsilon^{*(s_{2})}_{\beta}(k_{2}) \varepsilon^{(s_{2})}_{\nu}(k_{2})$$
$$\cdot \sum_{s_{3}} \varepsilon^{*(s_{3})}_{\gamma}(k_{3}) \varepsilon^{(s_{3})}_{\rho}(k_{3}) \frac{1}{2} \sum_{s} \varepsilon^{(s)}_{\delta}(k) \varepsilon^{*(s)}_{\lambda}(k).$$

Polarization sums in our model:

$$\sum_{s=1,2} \varepsilon_{\mu}^{*(s)}(k) \varepsilon_{\nu}^{(s)}(k) = -g_{\mu\nu} - \frac{k_0^2}{M_{LV}^2} u_{\mu} u_{\nu},$$

 $u_{\mu} = (1, 0, 0, 0).$

Calculations in FeynCalc plugin for Wolfram Mathematica:

A very large output was generated. Here is a sample of it: 16384 anl² an2² an3² k1·k4² k2·k3² u²⁴ + 16384 anl² an2² an3² k1·k3² k2·k4² u²⁴ + 16384 anl² an2² an3² k1·k2² k3·k4² u²⁴ + 32768 anl² an2² an3² k1·k3 k1·k4 k2·k3 k2·k4 u²⁴ + 32768 anl² an2² an3² k1·k2 k1·k4 k2·k3 k3·k4 u²⁴ + 32768 anl² an2² an3² k1·k2 k1·k4 k2·k3 k3·k4 u²⁴ + 32768 anl² an2² k1·k2 k1·k4 k3·k4 u²⁴ + w(1822 w + 58880 anl² k1·k2 k1·u2 k2·u k3·k4 k3·u k4·u + 69632 anl² an2² k1·k2 k1·u k2·u k3·k4 k3·u k4·u + 58880 an2² k1·k2 k1·u k2·u k3·k4 k3·u k4·u + 5880 anl² an3² k1·k2 k1·u k2·u k3·k4 k3·u k4·u + 68880 an2² an3² k1·k2 k1·u k2·u k3·k4 k3·u k4·u + 69632 an3² k1·k2 k1·u k2·u k3·k4 k3·u k4·u 5how Less Show More Show Full Output Set Size Limit...

Photon splitting calculation. Phase volume.

Kinematics

Angles between outgoing photons are assumed to be small.

We work in terms of longitudial and transverse momenta, k_i^{\perp} is assumed to be of the order of k^2/M_{LV} We introduce dimensionless variables α_1 , α_2 , α_3 , β_1 , β_2 :

$$k_i^{\parallel} = k \,\alpha_i, \qquad \alpha_1 + \alpha_2 + \alpha_3 = 1, \qquad k_i^{\perp} = \frac{k^2}{M_{LV}} \cdot \beta_i.$$
$$(k_3^{\perp})^2 = (k_1^{\perp})^2 + (k_2^{\perp})^2 + 2k_1^{\perp} k_2^{\perp} \cos \varphi_2.$$

Decay width

$$\Gamma_{\gamma \to 3\gamma} = \frac{1}{2^7 \, 3! \, \pi^4} \frac{k^4}{M_{LV}^2} \int \frac{d\alpha_1 \, d\alpha_2 \, d\beta_1 d\beta_2}{\alpha_1 \alpha_2} \frac{\overline{|\mathcal{M}|^2}}{\sin \varphi_2|_{\varphi_2 = \varphi_2(\alpha_1, \alpha_2, \beta_1, \beta_2)}}.$$

First integrate numerically over transverse momenta β_1, β_2 . Area of integration is determined by $|\sin \varphi_2| \leq 1$.

The decay width density $d^2\Gamma/d\alpha_1 d\alpha_2$

Integrate over transverse momenta β_1, β_2 . $\alpha_i = k_i/k$, $\alpha_3 = 1 - \alpha_1 - \alpha_2$.

Maximum at $\alpha_1 = \alpha_2 = \alpha_3 = 1/3$ but $\alpha_1 \sim \alpha_2 \sim 0.5, \alpha_3 \sim 0$ is not really suppressed.

The decay width density. Permutations symmetry.

Symmetry of final photons permutations $\alpha_i \leftrightarrow \alpha_j, i, j = 1, 2, 3, i \neq j, \alpha_3 = 1 - \alpha_1 - \alpha_2, \alpha_i = k_i/k.$ 6 physically equivalent regions. Shaded region – hierarchy

 $k_1 > k_2 > k_3$

Petr Satunin (INR, Moscow)

On photon splitting in Lorentz-violating QED

23 September 2019

The decay width density $d\Gamma/d\alpha_1$

Hierarchy $k_1 > k_2 > k_3$ is fixed.

Petr Satunin (INR, Moscow)

On photon splitting in Lorentz-violating QED

The total splitting width and mean free path for photons.

$$\Gamma_{\gamma \to 3\gamma} \simeq 1.2 \cdot 10^3 \left(\frac{2\alpha^2}{45}\right)^2 \frac{E_{\gamma}^{19}}{2^7 \, 3! \, \pi^4 m_e^8 M_{LV}^{10}} \simeq 9 \cdot 10^{-14} \, \frac{E_{\gamma}^{19}}{m_e^8 M_{LV}^{10}}.$$

The same parametric dependence as in but 5 orders of magnitude larger. Very sharp dependence on E_{γ} !

Mean free path

$$\langle L
angle_{\gamma
ightarrow 3\gamma} \simeq 8 imes \left(rac{M_{LV}}{10^{14}\,{
m GeV}}
ight)^{10} \, \left(rac{E_{\gamma}}{40\,{
m TeV}}
ight)^{-19} \, \, {
m Mpc}.$$

Estimated constraint on $\overline{M_{LV}}$ dependent on L_{source}

$$M_{LV} > \left(rac{E_{\gamma}}{40\,{
m TeV}}
ight)^{1.9} \, \left(rac{L_{source}}{8\,{
m Mpc}}
ight)^{0.1} \ imes \ 10^{14} \ {
m GeV}.$$

< 67 ▶

Petr Satunin (INR, Moscow) On photon splitting in Lorentz-violating QED 23 September 2019 15 / 19

Crab Nebula spectrum (HEGRA coll.)

best LI fit, splitting with fixed M_{LV} .

• HEGRA (2004): E = 75 TeV, significance 2.7σ

$$M_{LV} > 1.3 \times 10^{14} \text{ GeV}, 95\% \text{ CL}.$$

• HAWC (2019): E = 102(118) TeV, significance $4.5(5.4)\sigma$

 $M_{LV} > 2.2(3.0) \times 10^{14}$ GeV, 95% CL.

• Tibet (2019): E = 140 TeV, significance 5σ

 $M_{LV} > 4.1 \times 10^{14} \text{ GeV}, \quad 95\% \text{ CL}.$

- Direct calculations of the splitting process support estimations of *Gelmini Nussinov Yaguna 2005*
- Photon indeed lose energy in the splitting process: the configuration of two soft photons in the final state is suppressed.
- The bound on M_{LV} from the absence of the splitting process is an order of magnitude better than from the photon decay
- New observational data from HAWC and Tibet (photon energy more than 100 TeV) significantly improve the bound

Thank you for your attention!

3

- 一司