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Approaches

• GAN and VAE are mostly used nowadays for generating 
complicated objects 
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Generative Adversarial Network (GAN)

• Implicit p(x|y), sampling only
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Classic GAN

• Discriminator approaches Jensen–Shannon divergence
• vanishing gradients for poor generator

• mode collapse
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Illustration: Jonathan Hui
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Wasserstein GAN

• Uses “earth mover’s distance”:

• Kantorovich-Rubinstein duality:

• “Discriminator” function f(x) may be approached using deep 
network
• output is not probability, but any scalar number

• need to satisfy  1-Lipschitz condition
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WS GAN vs JS GAN
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CramerGAN
• WGAN produces biased gradients, that makes converging 

slower, sometimes never reaching optimum

• CramerGAN uses energy distance  as a critic (discriminator):

•  where X, X’, Y, Y’ are statistically independent samples from two 
distributions

• corresponds to the Cramer distance in 1D case:

• generator loss is therefore more complicated:

• critic is trained to maximize the energy distance

• CramerGAN demonstrates better convergency indeed
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4.1 Definition and Analysis

Recall that for two distributions P and Q over R, their (cumulative) distribution functions are re-
spectively FP and FQ. The Cramér distance between P and Q is

l
2
2(P, Q) :=

Z 1

�1
(FP (x) � FQ(x))2dx.

Note that as written, the Cramér distance is not a metric proper. However, its square root is, and is a
member of the lp family of metrics

lp(P, Q) :=

✓Z 1

�1
|FP (x) � FQ(x)|pdx

◆1/p

.

The lp and Wasserstein metrics are identical at p = 1, but are otherwise distinct. Like the Wasser-
stein metrics, the lp metrics have dual forms as integral probability metrics (see Dedecker and Mer-
levède, 2007, for a proof):

lp(P, Q) = sup
f2Fq

�� E
x⇠P

f(x) � E
x⇠Q

f(x)
��, (3)

where Fq := {f : f is absolutely continuous,
�� df

dx

��
q
 1} and q is the conjugate exponent of p, i.e.

p
�1 + q

�1 = 1.3 It is this dual form that we use to prove that the Cramér distance has property (S).
Theorem 2. Consider two random variables X , Y , a random variable A independent of X, Y , and

a real value c > 0. Then for 1  p  1,

(I) lp(A + X,A + Y )  lp(X, Y ) (S) lp(cX, cY )  |c|1/p
lp(X, Y ).

Furthermore, the Cramér distance has unbiased sample gradients. That is, given Xm :=
X1, . . . , Xm drawn from a distribution P , the empirical distribution P̂m := 1

m

Pm
i=1 �Xi , and a

distribution Q✓,

E
Xm⇠P

r✓l
2
2(P̂m, Q✓) = r✓l

2
2(P, Q✓),

and of all the l
p
p distances, only the Cramér (p = 2) has this property.

We conclude that the Cramér distance enjoys both the benefits of the Wasserstein metric and the
SGD-friendliness of the KL divergence. Given the close similarity of the Wasserstein and lp metrics,
it is truly remarkable that only the Cramér distance has unbiased sample gradients.

The energy distance (Székely, 2002) is a natural extension of the Cramér distance to the multivariate
case. Let P, Q be probability distributions over Rd and let X, X

0 and Y, Y
0 be independent random

variables distributed according to P and Q, respectively. The energy distance (sometimes called the
squared energy distance, see e.g. Rizzo and Székely, 2016) is

E(P, Q) := E(X,Y ) := 2E kX � Y k2 � E kX � X
0k2 � E kY � Y

0k2 . (4)

Székely showed that, in the univariate case, l
2
2(P, Q) = 1

2E(P, Q). Interestingly enough, the energy
distance can also be written in terms of a difference of expectations. For

f
⇤(x) := E kx � Y

0k2 � E kx � X
0k2 ,

we find that
E(X, Y ) = E f

⇤(X) � E f
⇤(Y ). (5)

Note that this f
⇤ is not the maximizer of the dual (3), since 1

2E is equal to the squared l2 metric (i.e.
the Cramér distance).4 Finally, we remark that E also possesses properties (I), (S), and (U) (proof in
the appendix).

3This relationship is the reason for the notation F1 in the definition the dual of the 1-Wasserstein (2).
4The maximizer of (3) is: g⇤(x) = f⇤(x)p

2(E f⇤(X)�E f⇤(Y ))
(based on results by Gretton et al., 2012).

5

4.1 Definition and Analysis

Recall that for two distributions P and Q over R, their (cumulative) distribution functions are re-
spectively FP and FQ. The Cramér distance between P and Q is

l
2
2(P, Q) :=

Z 1

�1
(FP (x) � FQ(x))2dx.

Note that as written, the Cramér distance is not a metric proper. However, its square root is, and is a
member of the lp family of metrics

lp(P, Q) :=

✓Z 1

�1
|FP (x) � FQ(x)|pdx

◆1/p

.

The lp and Wasserstein metrics are identical at p = 1, but are otherwise distinct. Like the Wasser-
stein metrics, the lp metrics have dual forms as integral probability metrics (see Dedecker and Mer-
levède, 2007, for a proof):

lp(P, Q) = sup
f2Fq

�� E
x⇠P

f(x) � E
x⇠Q

f(x)
��, (3)

where Fq := {f : f is absolutely continuous,
�� df

dx

��
q
 1} and q is the conjugate exponent of p, i.e.

p
�1 + q

�1 = 1.3 It is this dual form that we use to prove that the Cramér distance has property (S).
Theorem 2. Consider two random variables X , Y , a random variable A independent of X, Y , and

a real value c > 0. Then for 1  p  1,

(I) lp(A + X,A + Y )  lp(X, Y ) (S) lp(cX, cY )  |c|1/p
lp(X, Y ).

Furthermore, the Cramér distance has unbiased sample gradients. That is, given Xm :=
X1, . . . , Xm drawn from a distribution P , the empirical distribution P̂m := 1

m

Pm
i=1 �Xi , and a

distribution Q✓,

E
Xm⇠P

r✓l
2
2(P̂m, Q✓) = r✓l

2
2(P, Q✓),

and of all the l
p
p distances, only the Cramér (p = 2) has this property.

We conclude that the Cramér distance enjoys both the benefits of the Wasserstein metric and the
SGD-friendliness of the KL divergence. Given the close similarity of the Wasserstein and lp metrics,
it is truly remarkable that only the Cramér distance has unbiased sample gradients.

The energy distance (Székely, 2002) is a natural extension of the Cramér distance to the multivariate
case. Let P, Q be probability distributions over Rd and let X, X

0 and Y, Y
0 be independent random

variables distributed according to P and Q, respectively. The energy distance (sometimes called the
squared energy distance, see e.g. Rizzo and Székely, 2016) is

E(P, Q) := E(X,Y ) := 2E kX � Y k2 � E kX � X
0k2 � E kY � Y

0k2 . (4)

Székely showed that, in the univariate case, l
2
2(P, Q) = 1

2E(P, Q). Interestingly enough, the energy
distance can also be written in terms of a difference of expectations. For

f
⇤(x) := E kx � Y

0k2 � E kx � X
0k2 ,

we find that
E(X, Y ) = E f

⇤(X) � E f
⇤(Y ). (5)

Note that this f
⇤ is not the maximizer of the dual (3), since 1

2E is equal to the squared l2 metric (i.e.
the Cramér distance).4 Finally, we remark that E also possesses properties (I), (S), and (U) (proof in
the appendix).

3This relationship is the reason for the notation F1 in the definition the dual of the 1-Wasserstein (2).
4The maximizer of (3) is: g⇤(x) = f⇤(x)p

2(E f⇤(X)�E f⇤(Y ))
(based on results by Gretton et al., 2012).

5

arXiv:1705.10743

mailto:Fedor.Ratnikov@cern.ch?subject=


Fedor.Ratnikov@cern.ch Generative Models

Variational Autoencoder

• Autoencoder can be trained to sample realistic objects
• x → encoder → z → decoder → x’
• require x’ ∼ x

• Decoder part of the AE can generate realistic objects
• … providing correct prior distribution in the latent space p(z)

 9
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Variational Autoencoder

• Decoder part of the AE can generate realistic objects
• … providing correct prior distribution in the latent space p(z)

• Put extra requirement into the loss
• latent distribution p(z|X) must approach some standard one,            

e.g. 𝓝(0,I)
• make z(x) variational
• (make x’(z) variational)
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Variational Autoencoder

• VAE allows calculating p(x|y)
• NB: GAN only allows sampling from p(x|y)

• … but smaller number of dimensions in the latent space
• blurry objects
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Library Approach
• We have train sample for the generative model anyway
• consistency with this train sample is a figure of merit for the 

generative model

• Objects of the train sample may be used for generation directly
• similar to KNN classification algorithm

• k=1: search for the object with appropriate conditions in the 
(presumably huge) data library 

• k>1: need to interpolate between objects

• short distance objects interpolation, more robust than global 
generation 

• NB: library approach by construction uses full information 
which is contained in the training sample
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Generative Models at LHC
• About 80% of computing resources are used for MC 

simulation in HEP experiments
• Calorimeter simulation is one of bottlenecks

• RICH is the next in the row for LHCb detector

• > 85% of simulation is taken                                                                         
by these 

• Can not expect exponential                                                             
rise of CPU performance

• Need a work around for Run3                                                            
and HL-LHC

• Generative models trained on                                                          
the detailed GEANT simulation may be a solution
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Example: ECAL Conditional Fast Simulation
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Generator
input

5x1: 
px, py, pz, ...

256x4x4

128x8x8

64x16x16

32x32x32 30x30

Discriminator

256x4x4

128x8x8

64x16x16

32x32x32

Regressor (pretrained)

256x4x4

128x8x8

64x16x16

32x32x32

real

fake

30x30

30x30

score

input

1x1

5x1

Upsampling 2x + Conv + BN + ReLU

Conv s2 + LeakyReLU (gray = fixed)

CxHxW output tensor size (w/o batch size)

CxHxWCxHxW

noise
Nx1

Training scheme

FC + reshape

concat
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LHCb ECAL Simulation
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GEANT Simulated

GAN Generated

GEANT Simulated

GAN Generated

log10(cell energy)

log10(cell energy)
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Primary and Marginal Distributions

• Is hard to fit marginal distributions
• unless the model is aware that those are important for us
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Scientific Requirements

• For image generation we are usually happy if the result 
looks like it is desired

• In science we need the result to reasonably well match the 
given set of requirements. Requirements are driven by 
scientific considerations closely connected to the ultimate 
scientific goal
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Enforcing Important Statistics

• No generative model is ideal
• some deviations from the original distribution remain

• Models tend to learn primary statistics of generated objects

• In physics applications, we often need for our model to 
learn particular statistics which are marginal for the 
generated object 
• e.g. cluster shape fluctuations for fast calorimeter simulation

• Can enforce these statistics by explicit adding them to the 
loss
• can’t we?

 18
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Enforcing Important Statistics

• Can enforce statistics by explicit adding them to the loss
• can’t we?

• By adding necessary statistics to the loss we do enforce 
match for these statistics
• most likely by the price of overtraining these particular statistics
• … and we lose handle to validate quality of generator on this 

statistics

• Still can remove those statistics from loss, and see how far 
they would deviate 

• this could be a figure of merit for generating this statistics
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Generating Tails

• If the model is trained on the limited sample, how reliable 
are predictions beyond the training domain?

 20
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Asymptotic Properties
• Toy model
• two variables 

distributed 
LogNormal

• training sample 1K 
events

• target sample 1M 
events x1+x2

• use 1K samples with 
permutations

• Systematics due to 
fluctuation in tails

 21
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Asymptotic Properties
• Toy model
• two variables 

distributed 
LogNormal

• training sample 1K 
events (x<12)

• target sample 1M 
events x1+x2

• use 1K samples with 
permutations

• Systematics due to 
the marginal cut off
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Statistics Properties
• Toy model
• two variables distributed 

LogNormal

• training sample 1K 
events

• fit LogNormal to 1K 
samples

• variation for x1+x2

• Systematics from the 
model systematics
• driven by the train 

sample statistics
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Decomposition

• Quality of the generative models is limited by the size of the 
train data sample
• generative models may not give profit for producing statistically 

correct big data sets

• no information beyond the train sample is available

• model systematics corresponds to the train sample statistics
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Decomposition

• No information beyond the train sample is available

• Not quite if we can decompose generative model into separate 
components
• random combinations of different components may drastically increase 

variability
 25
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Decomposition
• Quality of the generative models is limited by the size of the 

train data sample
• generative models may not give profit for producing statistically 

correct big data sets
• no information beyond the train sample is available

• Not quite if we can decompose generative model into 
separate components
• random combinations of different components may drastically 

increase variativity
• E.g. fast simulation of the calorimeter response
• generator is trained on 106 incident particles
• ∼50 particles in the calorimeter per event
• total variability  ∼(106)50 = 10300 !  (NB intrinsic correlation)
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Quality Metric
• No generative model is ideal
• some deviations from the original distribution remain

• Minor deviations are not that important e.g. for image 
generation

• Minor deviations may be a big deal for generative models 
in physics
• e.g. we could want E2-p2=m2 for generated particles to be 

precise

• Ultimate generative model quality metric is a comparing the 
final physics result obtained using generative model with 
the one obtained using the test data
• accuracy is limited by the size of the test data 
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Practical Example: RICH-based particle ID

◊ Ring Image CHerenkov detector
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RICH Basics

◊ RICH response is used to identify 
particles 

◊ e.g. separate pions and kaons
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Figure 6.1: Cherenkov angle versus particle momentum for the RICH radiators.
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Figure 6.2: (a) Side view schematic layout of the RICH 1 detector. (b) Cut-away 3D model of the
RICH 1 detector, shown attached by its gas-tight seal to the VELO tank. (c) Photo of the RICH1
gas enclosure containing the flat and spherical mirrors. Note that in (a) and (b) the interaction point
is on the left, while in (c) is on the right.

• minimizing the material budget within the particle acceptance of RICH 1 calls for lightweight
spherical mirrors with all other components of the optical system located outside the accep-
tance. The total radiation length of RICH 1, including the radiators, is ⇠8% X0.

• the low angle acceptance of RICH 1 is limited by the 25 mrad section of the LHCb beryllium
beampipe (see figure 3.1) which passes through the detector. The installation of the beampipe
and the provision of access for its bakeout have motivated several features of the RICH 1
design.

• the HPDs of the RICH detectors, described in section 6.1.5, need to be shielded from the
fringe field of the LHCb dipole. Local shields of high-permeability alloy are not by them-
selves sufficient so large iron shield boxes are also used.

– 73 –
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Figure 6.20: Display of a typical LHCb event in RICH 1.

Table 6.3: Single photoelectron resolutions for the three RICH radiators. All numbers are in mrad.
Individual contributions from each source are given, together with the total.

Aerogel C4F10 CF4

Emission 0.4 0.8 0.2
Chromatic 2.1 0.9 0.5
HPD 0.5 0.6 0.2
Track 0.4 0.4 0.4
Total 2.6 1.5 0.7

6.2 Calorimeters

The calorimeter system performs several functions. It selects transverse energy hadron, electron
and photon candidates for the first trigger level (L0), which makes a decision 4µs after the inter-
action. It provides the identification of electrons, photons and hadrons as well as the measurement
of their energies and positions. The reconstruction with good accuracy of p0 and prompt photons
is essential for flavour tagging and for the study of B-meson decays and therefore is important for
the physics program.

The set of constraints resulting from these functionalities defines the general structure and
the main characteristics of the calorimeter system and its associated electronics [1, 121]. The
ultimate performance for hadron and electron identification will be obtained at the offline analysis
level. The requirement of a good background rejection and reasonable efficiency for B decays adds
demanding conditions on the detector performance in terms of resolution and shower separation.

– 96 –
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The LHCb RICH Collaboration, Adinolfi, M., Aglieri Rinella, G. 
et al. Eur. Phys. J. C (2013) 73: 2431
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RICH ID Simulation
◊ Accurate RICH simulation involves: 

◊ tracing the particles through the radiators 

◊ Cherenkov light generation 

◊ photon propagation, reflection, refraction and 
scattering 

◊ Hybrid Photon Detector (photo-cathode + 
silicon pixel) simulation 

◊ These require significant computing 
resources 

◊ Besides: 

◊ quality of obtained simulated ID variables is 
not satisfactory when comparing to 
calibration data samples 
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RICH ID Simulation
◊ Accurate RICH simulation involves: 

◊ tracing the particles through the radiators 

◊ Cherenkov light generation 

◊ photon propagation, reflection, refraction and scattering 

◊ Hybrid Photon Detector (photo-cathode + silicon pixel) simulation 

◊ These require significant computing resources 

◊ Besides: 

◊ quality of obtained simulated ID variables is not satisfactory when comparing to 
calibration data samples  

◊ Let’s use ML: 

◊ train generative model to directly convert track kinematics into ID 
variables 

◊ can train directly on calibration data samples
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Calibration Samples

◊ Minor problem: different phase space for different particles
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Technical Details

◊ 10 hidden fully-connected layers for both generator and 
discriminator 

◊ 128 neurons each 

◊ ReLU activation 

◊ 64-dimensional latent space (noise shape) 

◊ 256-dimensional discriminator output 

◊ 15 discriminator updates per 1 generator update 

◊ RMSProp optimizer, exp decaying learning rate
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RICH ID Separation

◊ Is this generation quality good or bad? 

◊ depends on what it is used for…
 34
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RICH ID Separation (Zoomed)

◊ Is this generation quality good or bad? 

◊ depends on what it is used for…
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Comparing Separation Power

◊ The final figure of merit is driven by particular physics analysis using 
this generated ID  

◊ FOM is as accurate as can be evaluated from available calibration statistics 

◊ fundamental limitation 
 36
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Comparing Separation Power
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Figure Of Merit
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K vs π, using RichDLLk µ vs π, using RichDLLmu p vs π, using RichDLLp

AUCREAL-AUCGEN

◊ The final figure of merit is driven by the particular physics 
analysis that uses this generated ID  

◊ FOM is as accurate as can be evaluated from available calibration 
statistics 

◊ fundamental limitation 
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Conclusions

• Surrogate generative models demonstrate extraordinary 
progress in current years

• There are many applications for use in HEP

• Generative models need attention to ensure scientifically 
solid results 
• satisfying boundary conditions, control of scientifically important 

but marginal statistics

• appropriate evaluating the quality of the model

• propagating model intrinsic systematics to the systematic 
uncertainties of the final scientific result 

• Success stories are available
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Generative Model. ML Perspective
• Generative models look very different from regression/classification 

models
• actually they are not that different

• Consider set of objects each of which is described by a vector of 
parameters
• we arbitrary split this vector into “features” x and “labels” y

• For classification/regression problem we search for deterministic 
function f which approximates dependency y from x: y=f(x)
• in probabilistic approach we search for probability p(y|x)

• For generation problem we want to sample objects for a given label
• we search for probability p(x|y)
• y for generative model is called “condition”
• condition may be absent - unconditional generative model
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Generative Model. ML Perspective
• In both discriminative model and generative model we want to get 

probability for subset of object parameters conditioned by another 
subset of object parameters

• Discriminative models:

• evaluate distributions for few, usually redundant, parameters 
conditioned by many features

• can discriminate basing on this parameters

• Generative models:

• evaluate many features conditioned by few parameters (conditions)

• can sample these features

• NB: logistic regression + binomial distribution = generative model 

• for the binary objects   
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