

Victor Riabov for the ALICE Collaboration

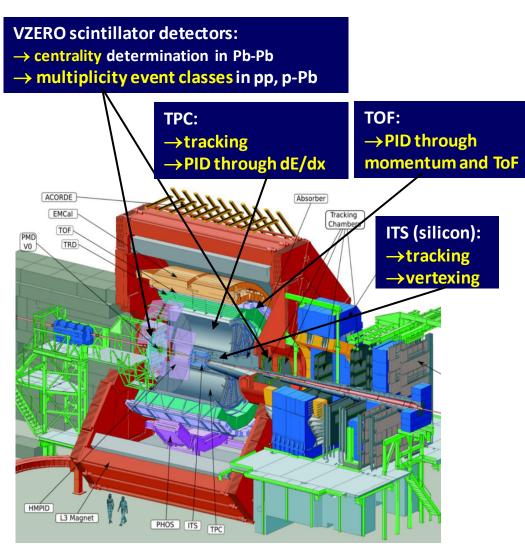
Outline

ALICE studies the properties of strongly interacting matter at extreme temperatures and energy densities, Quark-Gluon Plasma

★ Excellent capabilities for reconstruction and identification of π, K, ρ, K^{*}, p, φ, Λ, Σ, Ξ, Σ^{*}, Λ^{*}, Ξ^{*}, Ω, ... in a wide transverse momentum range $(p_T) \rightarrow$ test the phase transition, hadrochemistry and reaction dynamics

* Report recent results for low-to-intermediate p_T (soft probes) light-flavor hadrons in different collision systems:

- integrated yields and ratios:
 - chemical freeze-out conditions
 - strangeness enhancement
- $p_{\rm T}$ spectra and ratios:

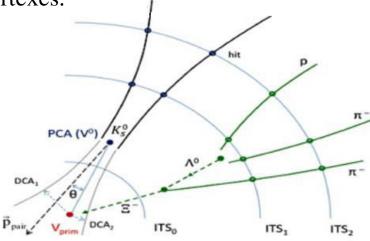

- kinetic freeze-out temperature and expansion velocity

- baryon-to-meson ratios
- short-lived resonances:
 properties of the hadronic phase
- ✓ light (anti)nuclei production

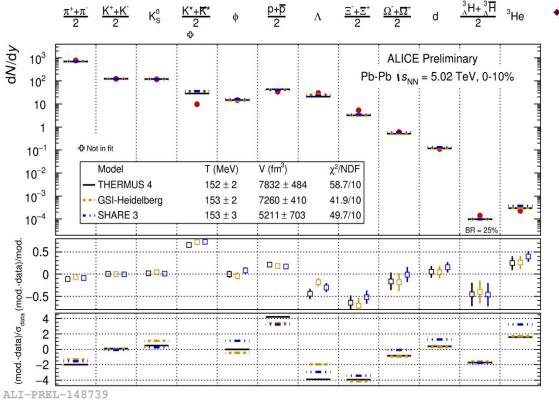
System	Year	Energy (TeV)	
рр	2009-2013	0.9, 2.76, 7, 8	
	2015,2017	5.02	
	2015-2018	13	
p-Pb/Pb-p	2013	5.02	
	2016	5.01, 8.16	
Xe-Xe	2017	5.44	
Pb-Pb	2010-2011	2.76	
	2015-2018	5.02	

ALICE experiment

Int. J. Mod. Phys. A 29 1430044 (2014)


• Moderate magnetic field (B = 0.5 T) at mid-rapidity, $|\eta| < 0.9$

• Tracking down to $p_{\rm T} \sim 100$ MeV/c


High granularity to deal with high occupancy in heavy-ion collisions

✤ Particle identification in a wide p_T range by combining various detectors and techniques (ITS, TPC, TOF, TRD, HMPID, calorimetry)

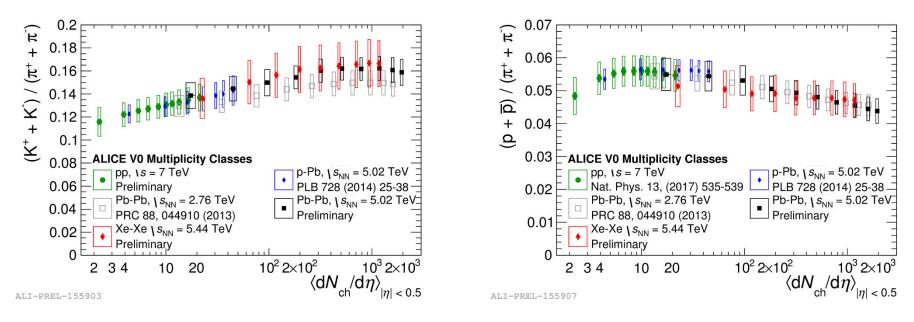
Decay topology cuts, secondary vertexes:

Hadron yields, thermal model fits: Pb-Pb@5.02, 0-10%

✤ Model assumptions:

- hadrons are emitted from statistically equilibrated system, chemical equilibrium
- $\checkmark~$ key parameter is a chemical freezeout temperature, $T_{\rm ch}$

♦ Yields of light-flavor hadrons and light (hyper)nuclei are described over seven orders of magnitude with a common chemical freeze-out temperature of $T_{ch} = 153 \pm 3$ MeV

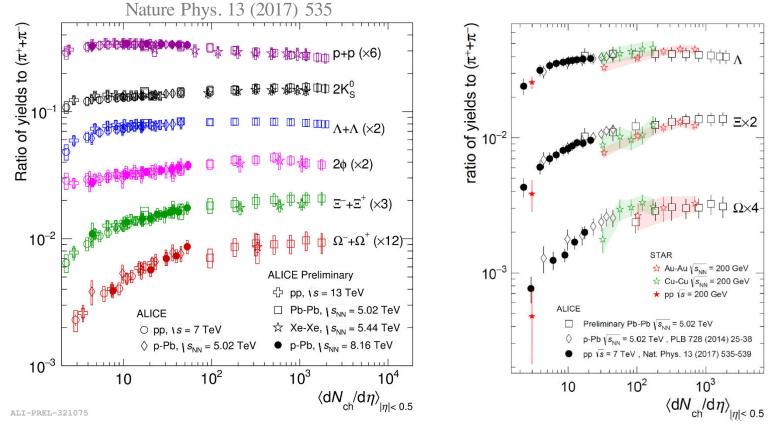

* Similar observations in Pb-Pb@2.76, slightly higher $T_{ch} = 156 \pm 3 \text{ MeV}$

Short-lived resonances, $\rho(770)$, K^{*}(892)⁰, $\Lambda(1520)$ etc., are overestimated due to rescattering in the late hadronic phase \rightarrow excluded from the fit

♦ Tensions for protons and multi-strange baryons \rightarrow incomplete hadron spectrum, baryon annihilation in hadronic phase, interacting hadron gas, ... ???

THERMUS: Wheaton et al, Comput.Phys.Commun, 180 84 (2009) GSI-Heidelberg: Andronic et al, Phys.Lett. B 673 142 (2009) SHARE: Petran et al, Comp. Phys.Commun. 195 (2014) 2056

Particle ratios: pp, p-Pb, Xe-Xe and Pb-Pb

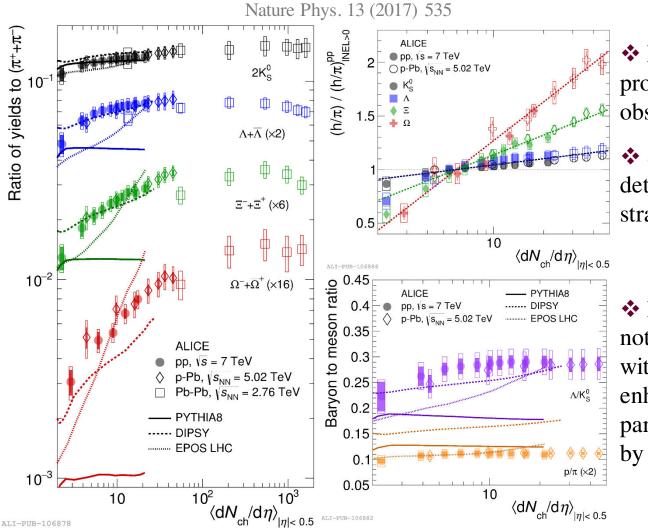

* At similar multiplicities, particle ratios (K/ π , p/ π etc.) are consistent for different collision systems (pp, p-Pb, Xe-Xe, Pb-Pb) at different energies, $\sqrt{s_{NN}} = 2.76-13$ TeV

Hadrochemistry is dominantly driven by event activity rather than by type of colliding nuclei and/or collision energy

* p/π shows a small decrease with centrality consistent with antibaryon-baryon annihilation in the hadronic phase, which is more important in dense systems*

• Increasing K/ π ratio is consistent with strangeness enhancement (next slide)

Strangeness production: pp, p-Pb, Xe-Xe and Pb-Pb



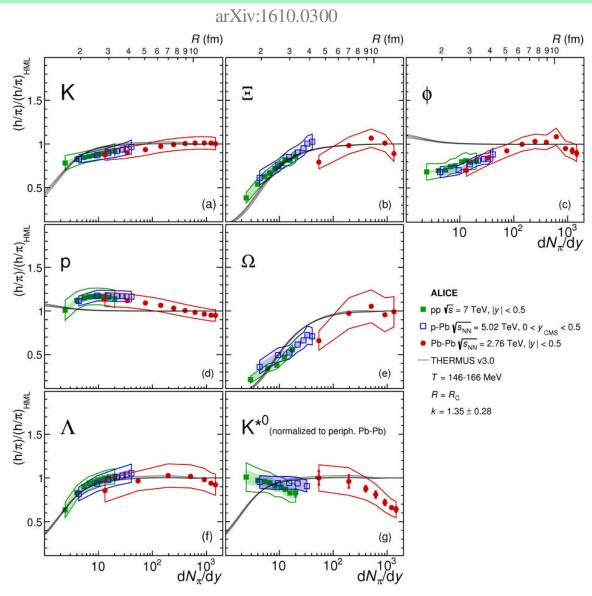
Strangeness enhancement increases with strangeness content and charged particle multiplicity
Ratios saturate in peripheral A-A at values predicted by statistical hadronization models

Smooth evolution vs. multiplicity in pp, p-Pb, Xe-Xe, Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76-13$ TeV \rightarrow hadrochemistry is driven by the multiplicity

◆ STAR measurements at √s_{NN} = 200 GeV are in agreement at high multiplicities (Cu-Cu, Au-Au), also consistent at low multiplicity (pp) within larger uncertainties
 ◆ Origin of the strangeness enhancement in small/large systems is still debated

Strangeness enhancement vs. microscopic models

 For non-strange particles like protons enhancement is not observed


 Strength of enhancement is determined by the hadron strangeness content

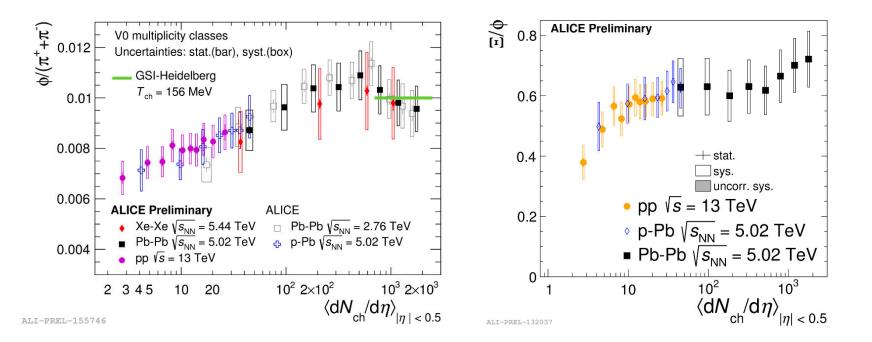
 ◆ Baryon-to-meson ratios do not depend on multiplicity within uncertainties → enhancement is driven by particle strangeness content, not by mass

* "Microscopic" models do not reproduce results in small systems:

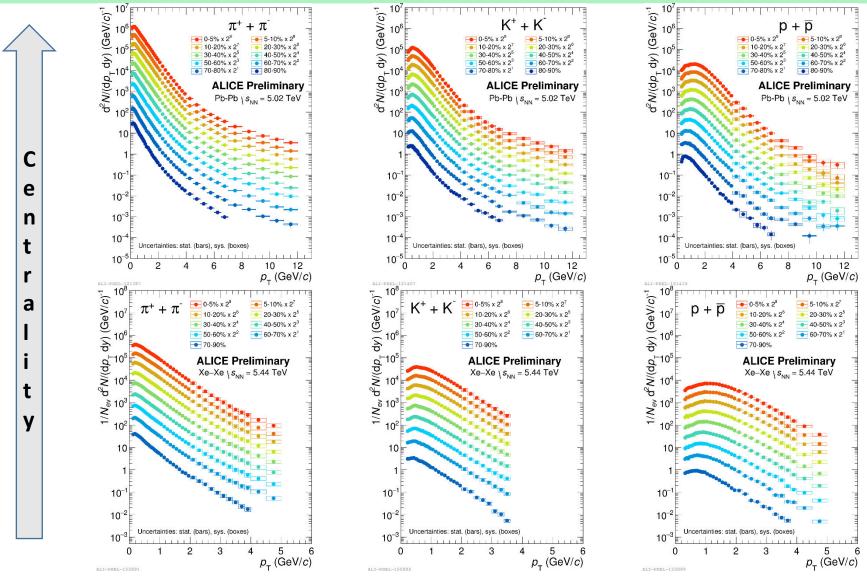
- ✓ DIPSY and EPOS-LHC qualitatively describe the increased strangeness production but fail to reproduce constant baryon-to-meson ratios
- ✓ Pythia8 with color reconnection fails to reproduce enhancement

Strangeness enhancement vs. thermal models

 Particle ratios are normalized to the high-multiplicity limit (except for K^{*0})

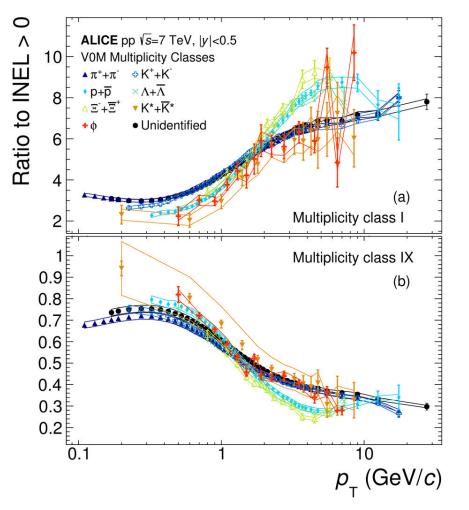

 ◆ Ratios are compared to the THERMUS strangeness
 canonical suppression model →
 strangeness production is
 suppressed in small systems due
 to canonical suppression (local
 conservation of strangeness)

Model provides good
 description of most of the ratios
 except for φ and K*


Strangeness enhancement: **\$**

- \diamond ϕ with hidden strangeness is a key probe to study strangeness enhancement
 - \checkmark ϕ/π increases with multiplicity in pp/ p-Pb \rightarrow not expected for canonical suppression
 - $\sqrt{\phi/\pi}$ saturates in Pb-Pb and is consistent with thermal model predictions
- Non-equilibrium production (γ_s) ???
- Ratios ϕ/K and Ξ/ϕ show weak dependence on multiplicity

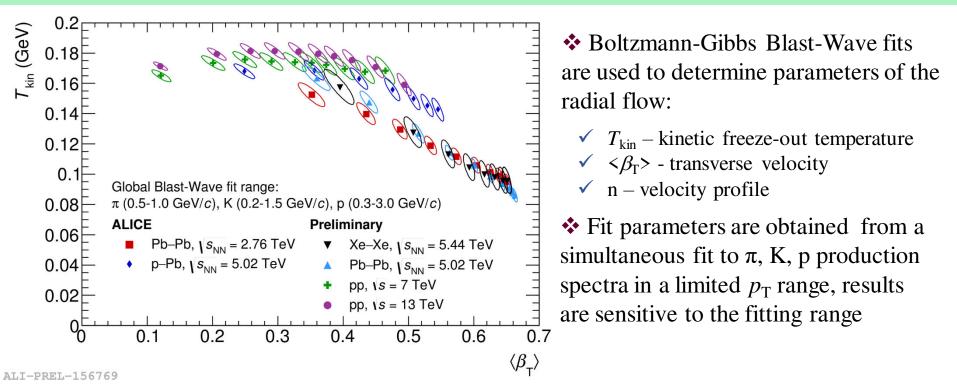
 \rightarrow ϕ has an effective strangeness of 1-2



$p_{\rm T}$ - spectra for $\pi/\text{K/p}$: Pb-Pb@5.02, XeXe@5.44

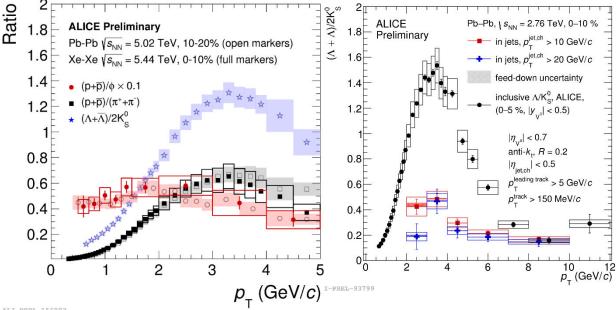
★ Observe mass-dependent hardening of particle spectra for $p_T < 3$ GeV/c going from peripheral to central collisions → collective radial flow $(m_T \rightarrow m_T + m_0 \gamma \beta_T)$ OFTHEP - 2019 10

Hadronic spectra in pp vs. multiplicity


VOM Multiplicity Classes: $[\langle dN_{ch}/d\eta \rangle^{INEL} \approx 6.0]$

 $I \rightarrow \langle dN_{ch}/d\eta \rangle^{INEL} \approx 3.5 \times \langle dN_{ch}/d\eta \rangle^{INEL}$

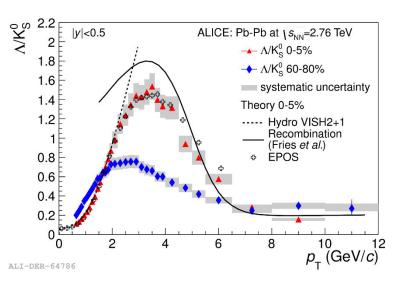
 $IX \rightarrow \langle dN_{ch}/d\eta \rangle^{INEL} \approx 0.65 \times \langle dN_{ch}/d\eta \rangle^{INEL}$


- In pp collisions spectra get harder with increasing multiplicity
- ◆ Effect is mass-dependent, it is more pronounced for p, Λ and Ξ than for π, K, K*
 → baryon/meson effect???
- ❖ Similar observations in pp and p-Pb collisions at different energies
 → radial flow ???

Blast-Wave model fits to ALICE data

- * Kinetic freeze-out temperature decreases, transverse flow velocity increases with multiplicity
- ♦ Consistent results for Pb-Pb and Xe-Xe at similar multiplicities, $T_{kin} \sim 100 \text{ MeV} < T_{ch}$
- pp and p-Pb are also consistent but with larger values of $\langle \beta_T \rangle$ at similar multiplicities
- ♦ $T_{\rm kin}$ stays constant in pp and slightly decreases in p-Pb, $T_{\rm kin} \sim 160 \text{ MeV} \sim T_{\rm ch} \rightarrow$ earlier decoupling compared to heavy-ion collisions
- Color reconnection (Pythia8) mimics radial flow-like effects in pp collisions

Baryon-to-meson ratios: Pb-Pb & Xe-Xe

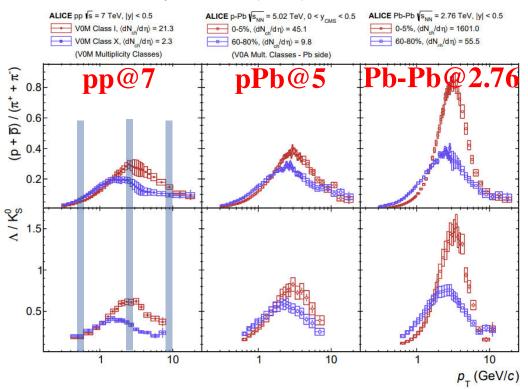


★ Enhanced baryon-to-meson ratios (p/π, Λ/K) in central heavy-ion collisions at intermediate p_T

Enhancement is consistent between Pb-Pb and Xe-Xe at similar multiplicities

Bulk effect, not present in jets

ALI-PREL-156893

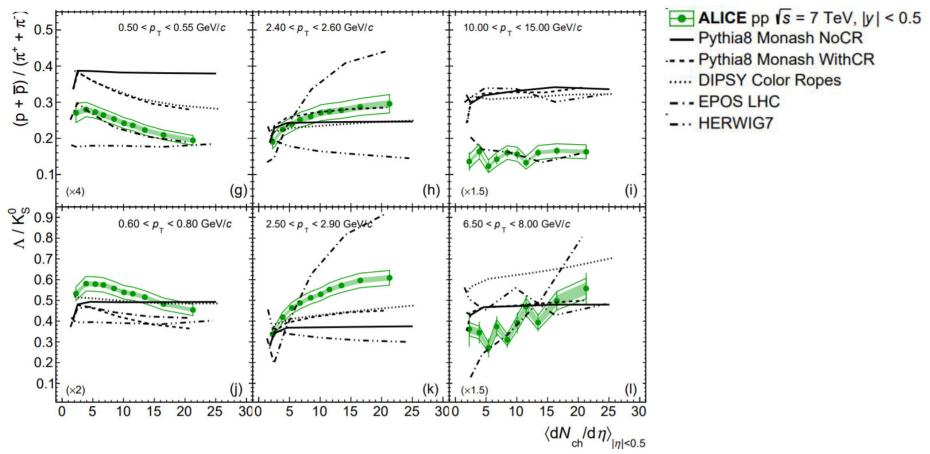

Model comparison:

- / hydrodynamics reproduces the rise at $p_{\rm T} < 2$ GeV/c
- \checkmark recombination reproduces ratios at intermediate $p_{\rm T}$
- EPOS provides good description by radial flow

♦ p/ ϕ ratio is flat vs. p_T at intermediate momenta in Pb-Pb and Xe-Xe collisions → spectral shapes are driven by particle masses:

- ✓ consistent with hydrodynamics
- \checkmark recombination models are not ruled-out ¹

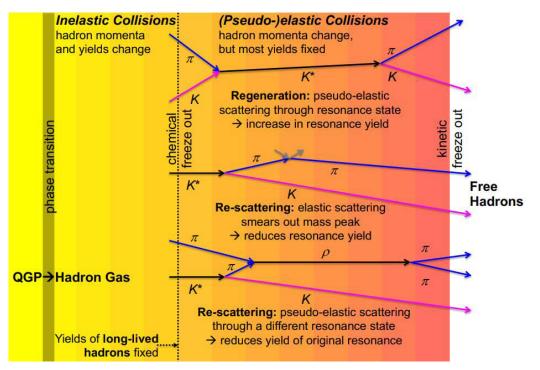
Baryon-to-meson ratios: pp, p-Pb and Pb-Pb


Phys. Rev. C99 (2019) no.2, 024906

Similar behavior for three systems, from peripheral to central collisions:

- \checkmark depletion at low $p_{\rm T}$
- \checkmark enhancement at intermediate $p_{\rm T}$
- \checkmark consistent at high $p_{\rm T}$

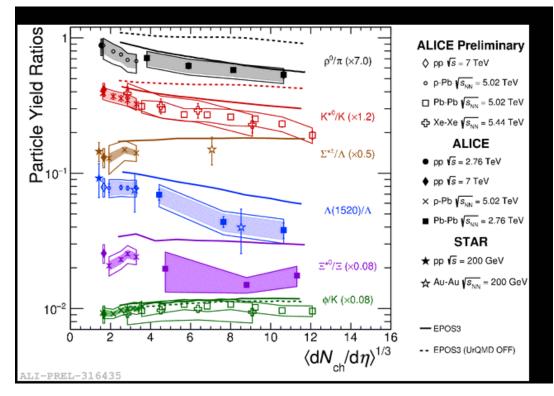
Baryon-to-meson ratios: pp


Phys. Rev. C99 (2019) no.2, 024906

- * No unique explanation for baryon-to-meson ratios in small systems
- Pythia8 with color reconnection and DIPSY with color ropes qualitatively describe pp data
- EPOS-LHC over-predicts effect by collective radial expansion

Short-lived resonances

increasing lifetime									
	ρ(770)	K [*] (892)	Λ(1520)	Ξ(1530)	φ(1020)				
c τ (fm/c)	1.3	4.2	12.7	21.7	46.2				
σ _{rescatt}	$\sigma_{\pi}\sigma_{\pi}$	$\sigma_{\pi}\sigma_{K}$	$\sigma_K \sigma_p$	$\sigma_{\pi}\sigma_{\Xi}$	$\sigma_K \sigma_K$				



Final state yields of resonances depend on:

- ✓ resonance yields at chemical freeze-out
- ✓ lifetime of the resonance and the hadronic phase
- ✓ type and scattering cross sections of daughter particles

Short-lived resonances

increasing lifetime									
	ρ(770)	K*(892)	Σ(1385)	Λ(1520)	Ξ(1530)	\$(1020)			
cτ (fm/c)	1.3	4.2	5.5	12.7	21.7	46.2			
σ _{rescatt}	$\sigma_{\pi}\sigma_{\pi}$	$\sigma_{\pi}\sigma_{K}$	$\sigma_\pi\sigma_\Lambda$	$\sigma_K \sigma_p$	$\sigma_{\pi}\sigma_{\Xi}$	$\sigma_K \sigma_K$			

Reproduced by EPOS3 with a hadronic phase simulated by UrQMD

- Results support the existence of a hadronic phase that lives long enough to cause a significant reduction of the reconstructed yields of short lived resonances
- ★ Lower limit for the lifetime of the hadronic phase, $\tau > 2$ fm/c*

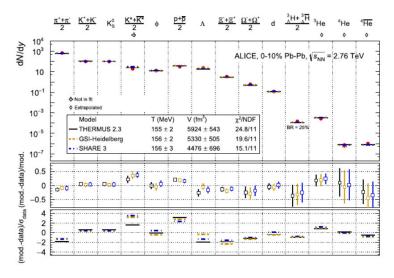
Light (anti)nuclei production

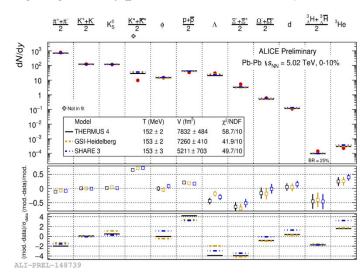
- Light (anti)nuclei are measurable in pp, p-Pb and Pb-Pb collisions at LHC energies
- The production mechanisms are not well understood
- ✤ Two classes of models are available

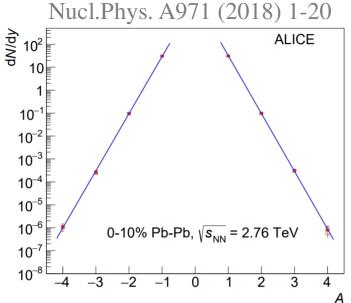
Thermodynamic models

- ✓ particle abundancies are fixed at chemical freeze-out, T_{ch}
- ✓ because of large masses nuclei are very sensitive to T_{ch} , $\frac{dN}{dy} \sim exp(\frac{m}{T_{ch}})$
- exponential dependence of the yields on particle masses

Coalescence models

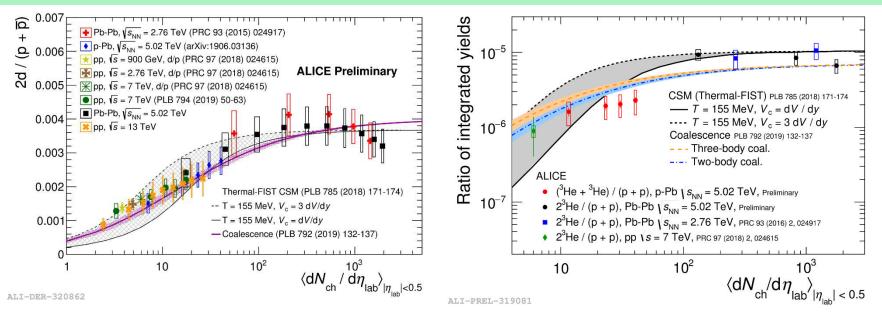

- baryons which are close enough in the phase-space after kinetic freeze-out can form a nucleus
- ✓ probability to form a nucleus with mass number A is defined by B_A , where:


$$E_i \frac{\mathrm{d}^3 N_i}{\mathrm{d} p_i^3} = B_A \left(E_\mathrm{p} \frac{\mathrm{d}^3 N_\mathrm{p}}{\mathrm{d} p_\mathrm{p}^3} \right)^A$$

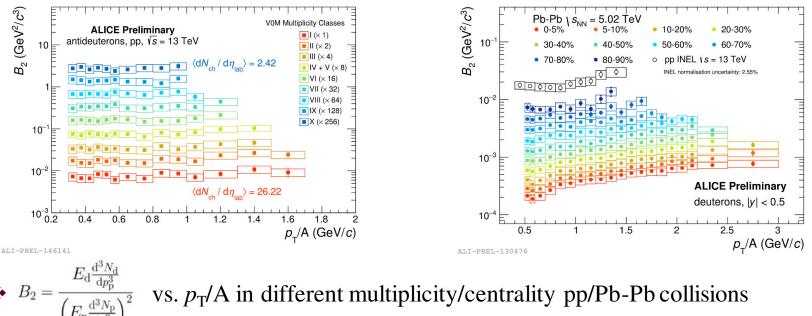

- nuclei produced at chemical freeze-out can break up and re-form before kinetic freeze-out
- Light (anti)nuclei probe the thermal equilibrium and collectivity in pp, p-Pb and Pb-Pb

Thermal model fits: Pb-Pb

* Thermal model fits describe particle yields, including light (hyper)nuclei with $T_{ch} \sim 155 \text{ MeV}$



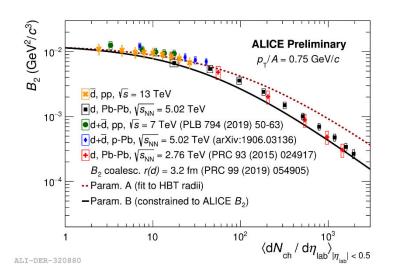
✤ Thermal model prediction of exponential decrease of the yield with mass, ^{dN}/_{dy} ~ exp(^m/<sub>T_{ch}), is confirmed up to A=4
✤ In Pb-Pb, the penalty factor for adding a nucleon is ~ 300 for particles and antiparticles
</sub>


Deuteron and ³He production, ratios

♦ d/p and ³He/p ratios do not show discontinuity vs. multiplicity going from pp to central Pb-Pb collisions at different energies → hint of a common production mechanisms controlled by the system size

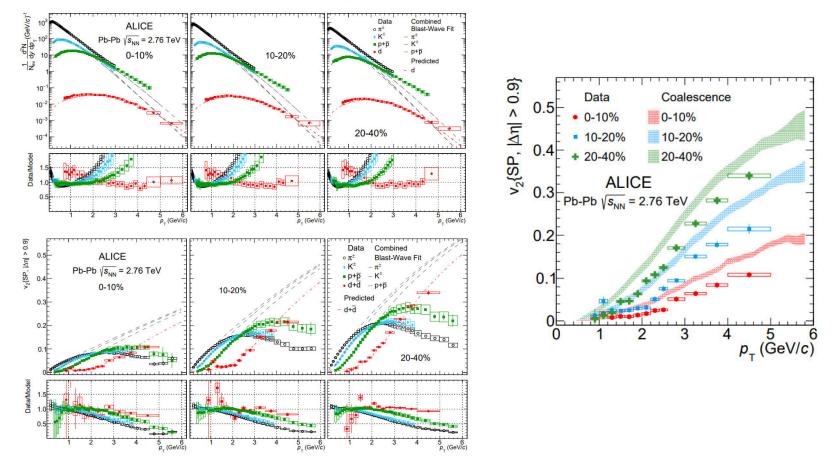
- * Ratios are increasing in small systems described by:
 - \checkmark canonical suppression in thermal models
 - small phase space in coalescence models
- Ratios saturate in heavy-ion collisions:
 - ✓ described by thermal and coalescence models
- ✤ More data is needed to cover a multiplicity gap for ³He/p ratio

Deuteron production


 $\bigstar \quad B_2 = \frac{E_{\mathrm{d}} \frac{\mathrm{d}^3 N_{\mathrm{d}}}{\mathrm{d} p_{\mathrm{p}}^3}}{\left(E_{\mathrm{p}} \frac{\mathrm{d}^3 N_{\mathrm{p}}}{\mathrm{d} n^3}\right)^2}$

 \bullet B₂ is predicted to be flat vs. $p_{\rm T}$ by simple coalescence

consistent with measurements in pp


the higher the centrality the stronger the rise of B_2 with p_T in Pb-Pb \rightarrow not consistent

 $\mathbf{*}$ B_2 does not show discontinuity vs. multiplicity going from pp to central Pb-Pb collisions at different energies \rightarrow hint of a common production mechanisms controlled by the system size

Deuteron production

Eur.Phys.J. C77 (2017) no.10, 658

★ Blast-Wave model fits to charged $\pi/K/p$ are used to predict p_T spectra and v_2 of deuterons → results are consistent with common freeze-out for light hadrons and deuterons

★ Coalescence model relates flow of deuteron (v_{2,d}) to flow of proton (v_{2,p}) : $v_{2,d}(p_{T}) = \frac{2v_{2,p}(p_{T}/2)}{1+2v_{2,p}^{2}(p_{T}/2)} \quad \Rightarrow \text{ coalescence does not describe } v_{2,d}$

Conclusions

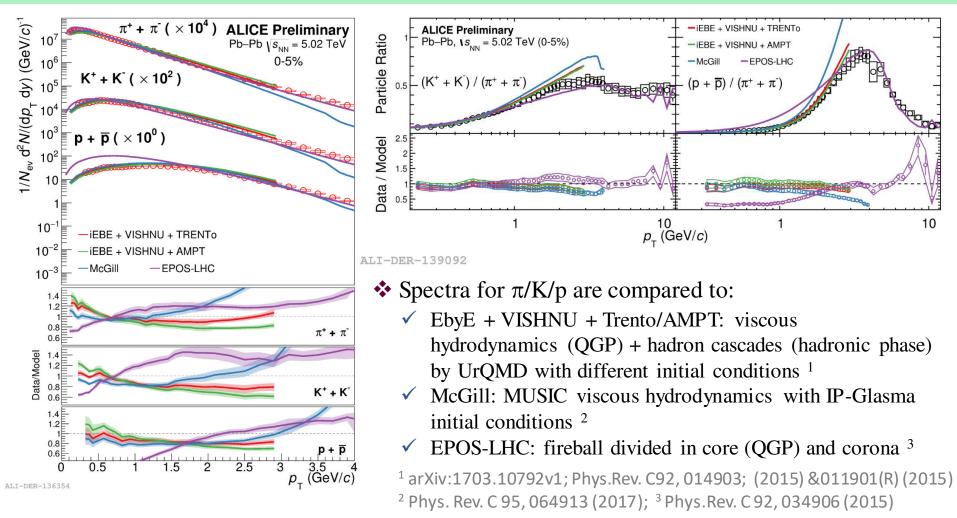
Hadrochemistry is driven by final state particle multiplicity, not by type of colliding nuclei or collision energy

* Thermal models describe most particle yields with a common value of the chemical freeze-out temperature, $T_{ch} \sim 155 \text{ MeV}$

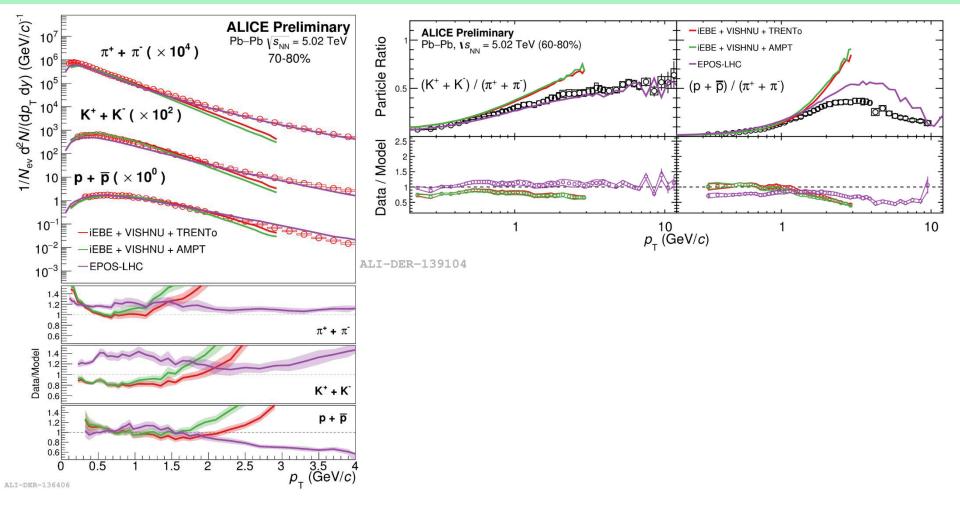
* Strangeness enhancement is observed in small and large collision systems. Canonical suppression is able to reproduce results except for ϕ , which has hidden strangeness

♦ Radial flow hardens particle p_T spectra in A-A. Hint of radial flow is also observed in small systems although interpretation is not unique.

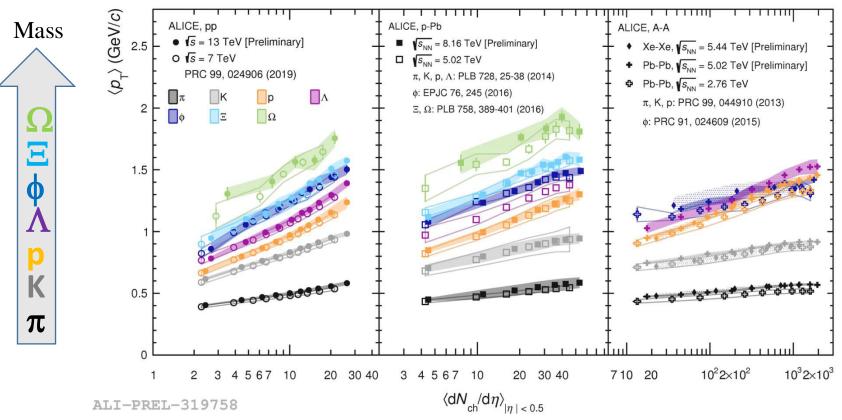
* Baryon-to-meson ratios show similar trends in small and large collision systems


Results for short-lived resonances support the existence of a hadronic phase that lives long enough to cause a significant reduction of the measured yields

Production of light (anti)nuclei is consistent with thermal production and hydrodynamic flow in heavy-ion collisions and coalescence in pp


QFTHEP - 2019

p_T spectra in 0-5% Pb-Pb@5 vs. models

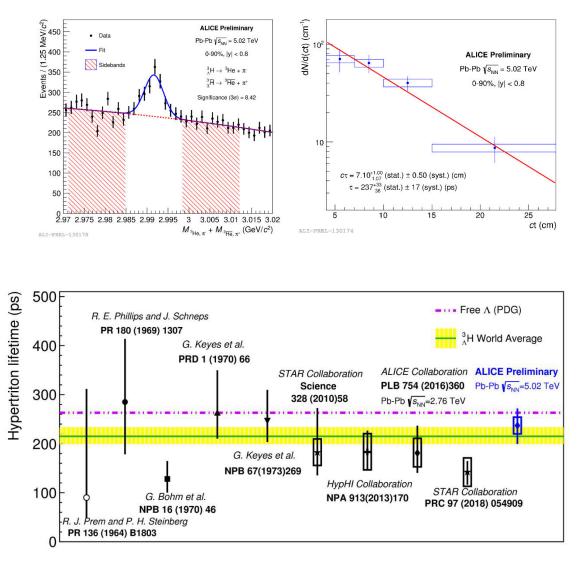

Hydrodynamic models reproduce basic features of spectra and ratios at p_T below ~ 2 GeV/c
EPOS-LHC reproduces ratios up to higher momenta but not the spectra

p_T spectra in 70-80% Pb-Pb@5 vs. models

✤ Agreement worsens towards more peripheral collisions

Mean p_{T} : pp \rightarrow p-Pb \rightarrow Pb-Pb

• Growth of $\langle p_T \rangle$ with multiplicity is generally attributed to radial flow, especially in Pb-Pb


✤ pp, p-Pb and peripheral Pb-Pb:

- ✓ similar dependence of $< p_T >$ on particle mass
- ✓ ϕ and K^{*} meson have larger <*p*_T> than p and Λ → mass ordering is violated, baryon/meson effect ???

✤ central Pb-Pb:

✓ particles with similar masses have the same $\langle p_T \rangle$ → expected from hydrodynamics

Hypertriton lifetime, Pb-Pb@5

Due to small binding energy,
 hypertriton lifetime is expected to
 be close to the free Λ lifetime

 Previous heavy-ion results at RHIC and the LHC reported lifetimes below the free Λ lifetime

* New results from Pb-Pb@5 with improved precision are compatible with world average and free Λ lifetime