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INTRODUCTION AND OVERVIEW
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The investigation of energy spectra of hydrogen muonic molecules is

important for muonic catalysis of nuclear fusion reactions. A calculation

of fine and hyperfine structure of muonic molecular ions as well as

higher order QED corrections allows us to predict the rates of reactions

of their formation and other parameters of the μCF cycle.
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PURPOSE

The aim of this work is to study hyperfine splitting of three-particle tdμ,

dpμ and tpμ muonic molecular ions on the basis of variational approach.

Tasks:

1. Analytical calculation of diagonal and off-diagonal matrix elements of

kinetic energy, potential energy and overlap for basis functions;

2. Writing computer code to solve bound state problem for three particles using

stochastic variational method with correlated Gaussian basis;

3. Calculation of the energy of the ground state of tdμ, dpμ and tpμ muonic

molecular ions and their hyperfine structure.



4

GENERAL FORMALISM 
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Let us consider a system of 3 particles with masses m1, m2 and m3 and charges z1, z2

and z3 respectively. The Schrodinger equation in the Jacobi coordinates has the form:

In variational method the wave function of the system is presented as follows
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An upper bound for the energy of the ground state is given by the lowest eigenvalue 

of the generalized eigenvalue problem:
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GAUSSIAN BASIS FUNCTIONS

In variational approach with correlated Gaussian basis wave functions have the form:
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x Jacobi coordinates

center of mass coordinate

The diagonal elements of the (N-1)×(N-1) dimensional symmetric, positive definite

matrix A correspond to the nonlinear parameters of Gaussian expansion, and the off-

diagonal elements connect different relative coordinates thus representing the

correlations between particles.

The angular part of the basis wave function has the following form:
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We use the following order of particles:

JACOBI COORDINATES
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The Jacobi coordinates are related to the relative

particle coordinates as follows:

For the interparticle coordinates:
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GROUND STATE L=0
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Kinetic energy operator:

where:
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Matrix elements of kinetic energy:
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GROUND STATE L=0

Potential energy operator:

Matrix elements of potential energy:

Overlap matrix elements:
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HYPERFINE STRUCTURE
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Hyperfine structure can be described with the following interaction potential:

Where indices 1, 2 denote nuclei of hydrogen isotopes, index 3 denotes muon.
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MATRIX ELEMENTS FOR HFS
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AVERAGING OVER SPIN FUNCTIONS

Averaging over spin functions can be performed using the following relations:
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ENERGY MATRIX

After averaging over spin functions energy matrix takes form:
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After diagonalization eigenvalues can be obtained:
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ENERGY MATRIX

After averaging over spin functions energy matrix takes form:

After diagonalization eigenvalues can be obtained:

 cbaacbcabcba

cba

cba







4414499
4

1

)22(
4

1

4

1

222

4,3

2

1









14

ADDITIONAL CORRECTIONS, VACUUM POLARIZATION

To improve the accuracy of our calculations we take into account vacuum polarization

corrections:

Where indices a, b correspond to nuclei of hydrogen isotopes, µ corresponds to muon.
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ADDITIONAL CORRECTIONS, NUCLEAR STRUCTURE

Nuclear structure corrections of the leading order take the form:
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THE PROGRAM

 For the numerical calculation of energy levels of three-particle Coulomb bound 

states the code in MATLAB is written. The program uses stochastic variational

approach with random optimization procedure for nonlinear variational parameters; 

 The program is based on the Fortran program by  K.Varga and Y.Suzuki;

 A number of changes is made compared to the Fortran program, including the 

ability to calculate states with nonzero L, more convenient generation of variational

parameters and various optimization changes;

 The main results of the calculation include energies of ground and excited states 

along with variational wave functions for each state. The program is capable of 

calculating L=0 and L=1;

 We are now working on calculation of L=1 hyperfine structure.

K. Varga, Y. Suzuki// Computer Physics Communications 106 (1997) 157-168



NUMERICAL RESULTS
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For ground state and hyperfine structure of tdμ, dpμ and tpμ the following numerical results 

are obtained:

A. M. Frolov // Eur. Phys. J. D. –– 2012. –– Vol. 66. –– P. 212––223. 
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