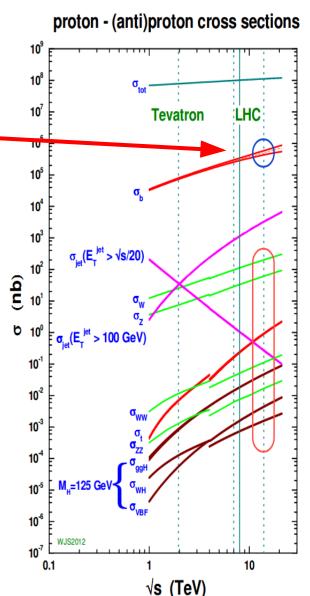
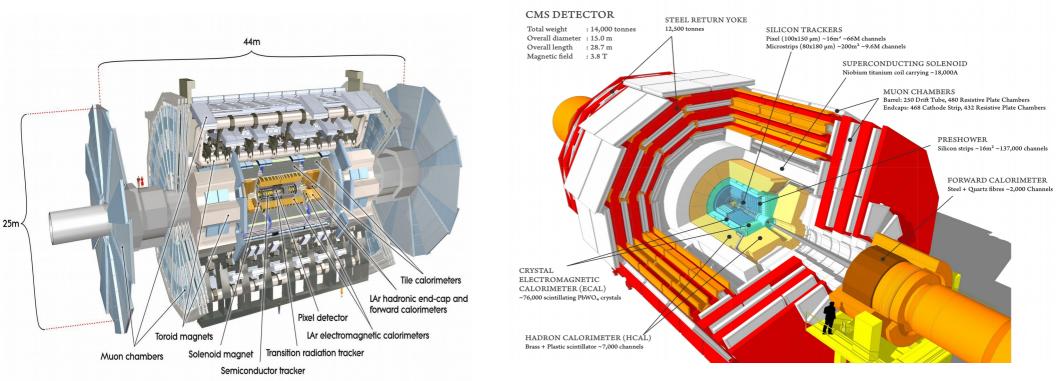
Heavy quark physics at ATLAS and CMS (excluding top)

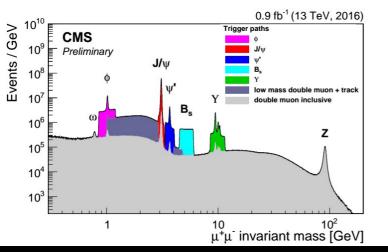


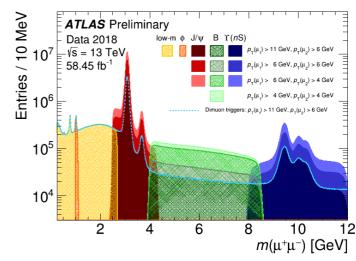
Oleg Meshkov (MSU & Lebedev PI) The XXIV International Workshop High Energy Physics and Quantum Field Theory September 22 – 29, 2019 Sochi, Russia


On behalf of the ATLAS and CMS Collaborations

b hadron production at the LHC

- b hadrons (and anti-hadrons) are dominantly produced through strong interaction in pp collisions at the LHC
 - → Large inclusive bb cross-section (~ 0.1 mb)
 - → All b hadron types including Λ_{b} , B_{c} and B_{s} are produced
- Unfortunately, it's hard to efficiently trigger on b hadron decays at the LHC
 - b decay products have relatively low pT, predominantly produced in forward direction
- Exceptions
 - Dedicated displaced vertex triggers (for example, LHCb)
 - → Specific final states, e.g. including di-muons

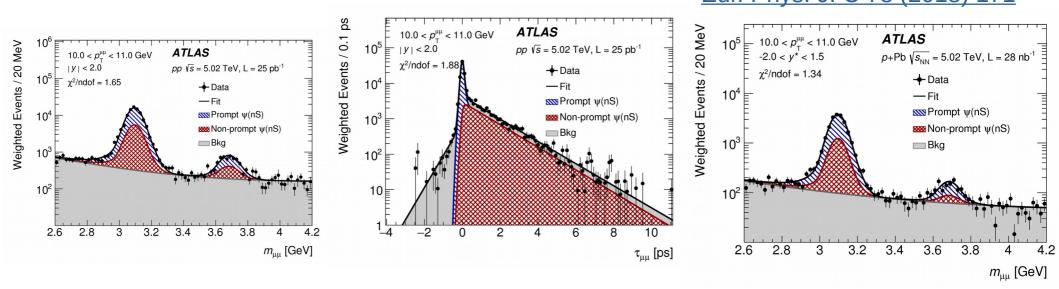

The ATLAS and CMS detectors



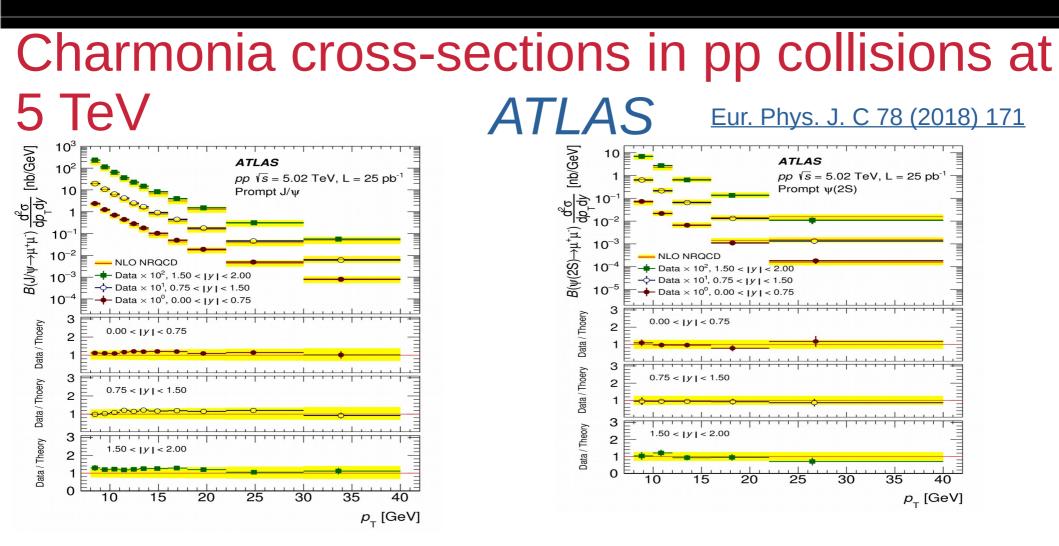
- Multipurpose detectors with similar performance designed to study pp collisions at 14 TeV
 - Track momentum resolution and therefore b hadron mass resolution depends critically on magnetic field strength
 - ATLAS: 2T; CMS: 4T
 - → Fake muon rejection critical for background suppression
 - CMS: π (0.05-0.13)%, K (0.08-0.22)%, p (0.04-0.15)%
 - ATLAS:π (0.04-0.13)%, K (0.07-0.1)%, p 10⁻⁵

B-physics trigger

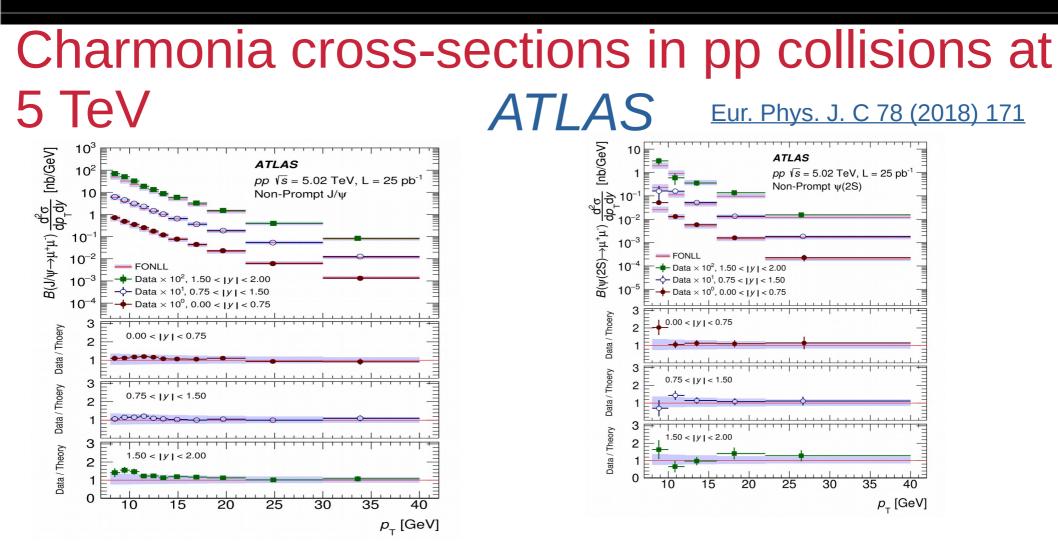
- Both experiments have multi-level triggers
 - Level-1 \rightarrow hardware muon identification
 - High-level \rightarrow Complete event reconstruction using also ID information
- Trigger is complicated due to low thresholds in muon $P_T \rightarrow$ Incompatible with bandwidth constraints at high luminosity
- CMS can go lower in muon P_T for the stronger magnetic field
- ATLAS can use topological information (m($\mu\mu$), $\Delta R(\mu\mu)$) to reduce the bandwidth acting on kinematic of the di-muon system

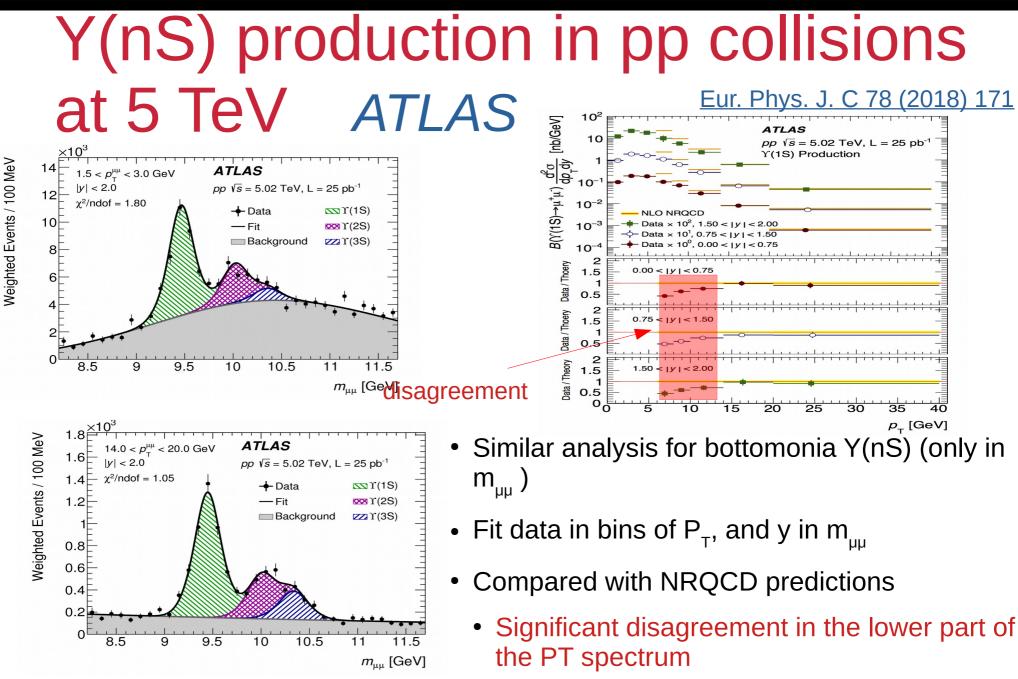

B-physics program

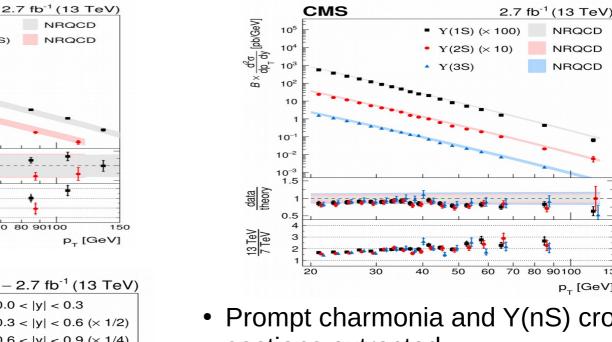
- B-physics (and light states) :
 - ► Test of QCD-based prediction: cross section,spectroscopy, etc.
 - Quarkonia production and decay
 - J/ ψ +J/ ψ , J/ ψ W, J/ ψ Z associated production (double parton scattering)
 - Spectroscopy (χ_{b3P} , X_c, X_b searches, B_c excited states), new states
 - Exotic hadrons: Tetraquark ($B_s\pi$), pentaquark (J/ ψ p) searches
 - Polarisation, decays asymmetries studies (Λ_b , Λ , bb correlations)
 - Test of EW physics, or search for new physics is areas where the SM predicts rare processes or small effects
 - Rare decay of $B_{s,d} \rightarrow \mu \mu,$
 - ϕ_{S} in $B_{S} \rightarrow J/\psi \phi$
 - Flavour anomalies (angular correlation in $B_d \rightarrow K^* \mu \mu$, R(K*))
 - $\bullet\,\tau \ \rightarrow \ 3\mu$

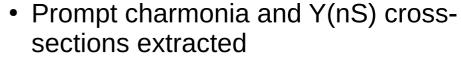

Only recently results are presented

Quarkonia production and decay


Quarkonia production in pp and p-Pb collisions at 5 TeV ATLAS Eur. Phys. J. C 78 (2018) 171


- Prompt(not from B-decays) and non-prompt(from B-decays) J/ ψ and $\psi(2S)$ reconstruction
- Simultaneous fit in mass and pseudo-proper lifetime $\tau_{_{\mu\mu}}$
- Fit data in bins of P_{τ} , y and centrality using p.d.f. for m_{uu} and τ_{uu}

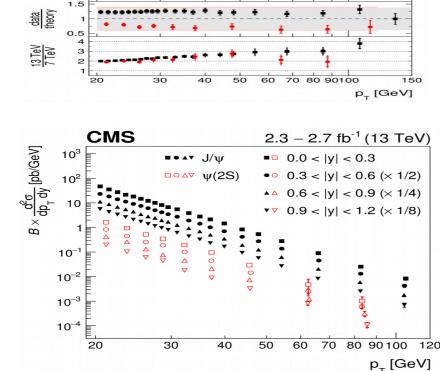

- Prompt charmonia J/ ψ and $\psi(2S)$ cross-sections extracted
- Compared with NRQCD predictions
 - Overall good agreement



- Non-prompt charmonia J/ ψ and ψ (2S) cross-sections extracted
- Compared with FONLL predictions
 - Overall good agreement

Quarkonia cross-sections in pp CMS collisions at 13 TeV Phys. Lett. B 780 (2018) 251

NRQCD


NRQCD

NRQCD

130

p₋ [GeV]

- Compared with NRQCD predictions
 - Overall good agreement
 - In low-PT Y(nS) region data below NRQCD prediction(but compatible)

25)

CMS

 $B \times \frac{d^2 \sigma}{d p_T d y} [pb/GeV]$

104

10

10

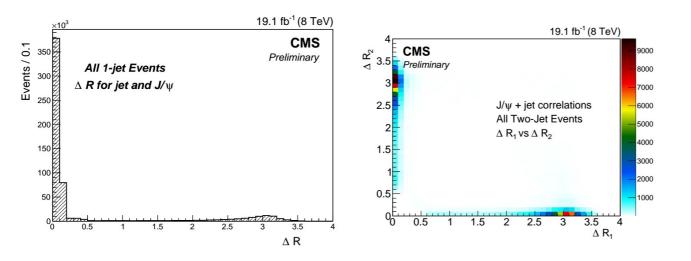
10

10-2 10-3

10

J/ψ production in jets at 8 TeV CMS

<u>CMS-PAS-BPH-15-003</u>

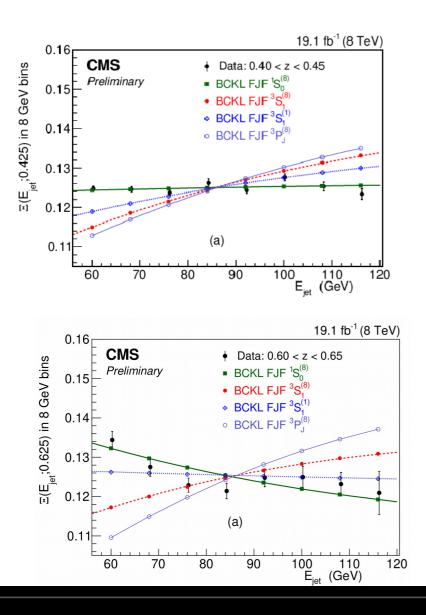

- Measurement of J/ψ–jet Association is a test of the role of jet fragmentation in quarkonium production with Run1 data (19.1 fb⁻¹, √s = 8 TeV)
- Theoretically described in Fragmenting-Jet Function(FJF) approach.
- Crucial variables to describe J/ψ kinematics are: E_{jet} and $z = E_{J/\psi}/E_{jet}$
- Using NRQCD, the theoretical predictions are based on LDMEs with different amplitudes that dominate depending on jet rapidity regions
 - At large rapidities charm fragmentation more prominent
 - At small rapidities gluon fragmentation dominant
- Goal is to measure the double differential cross-section as a function of z and E_{iet} to disentagle the various LDME contribution

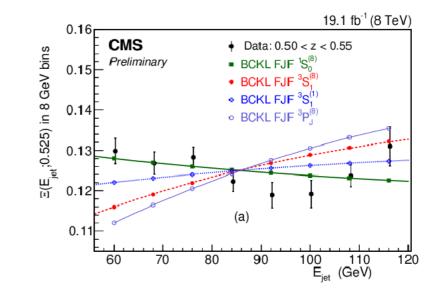
J/ψ production in jets at 8 TeV CMS

• E(J/ψ) > 15 GeV, |y| < 1.

<u>CMS-PAS-BPH-15-003</u>

- Anti-kT jets with R=0.5 and P_{τ} > 25 GeV, $|\eta|$ < 1
- J/ψ associated to a given jet if $\Delta R < 0.5$
- Investigated region: 0.3 < z < 0.8 where FJF predictions available
- · Event with one or two jets are considered

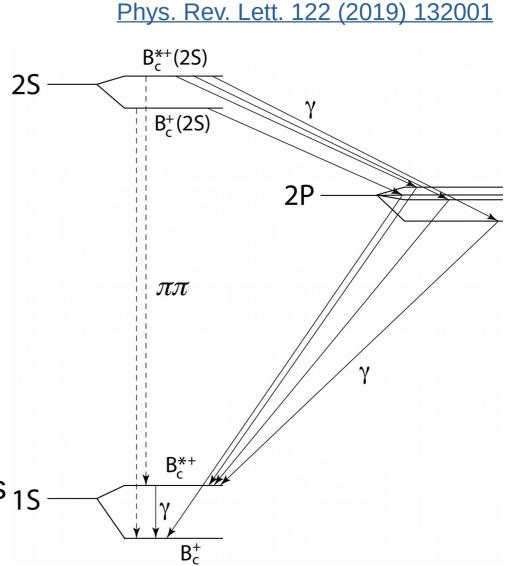



Once J/ψ - jet association is made, compute this:

$$\Xi(E,z) = \frac{1}{N(z)} \frac{N(E,Z)}{\int_{0.3}^{0.8} N(E,\dot{z}) d\dot{z}}$$

J/ψ production in jets at 8 TeV CMS

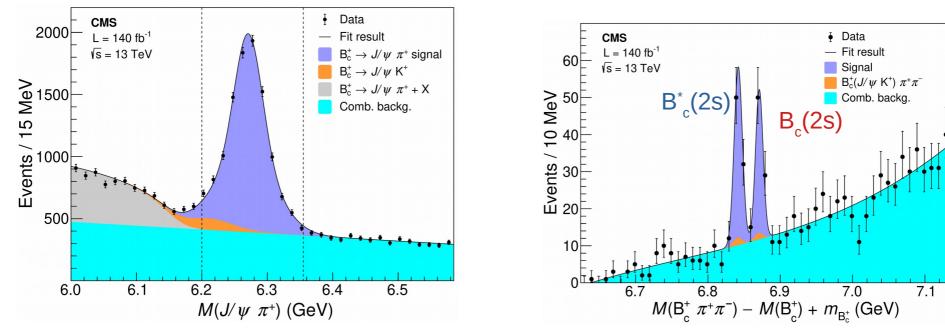
CMS-PAS-BPH-15-003



- FJF predictions for gluon jet fragmentation in the central region describe well data
- Jet fragmentation can account for > 80% of J/ ψ production

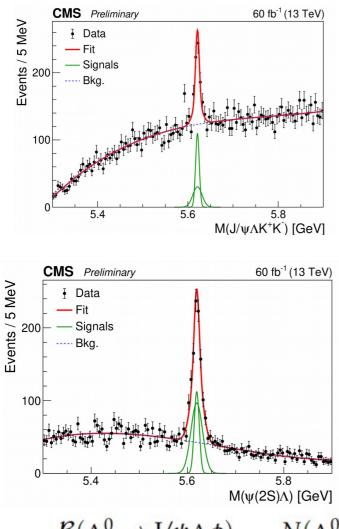
Spectroscopy New states

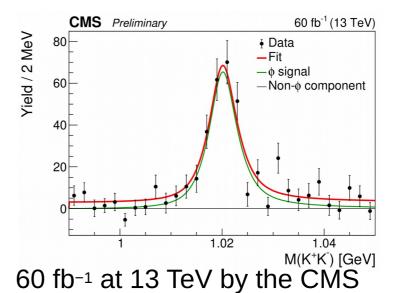
B_c(2s) excited state


- CMS measured it with full Run2 data: 143 fb⁻¹
- Final states:
 - $B_{c}^{+}(2s) \rightarrow B_{c}^{+}\pi\pi$ where $B_{c}^{+} \rightarrow J/\psi\pi$
 - $B_c^{*}(2s) \rightarrow B_c^{*}(2s)\gamma \rightarrow B_c^{*}\pi\pi$ where $B_c^{+} \rightarrow J/\psi\pi$
- Sensitive to both transition despite the lost soft-photon
 - Theory predicts smaller mass 1S gap w.r.t. B⁺_c^{*} and B⁺_c

CMS

B_c(2s) excited state

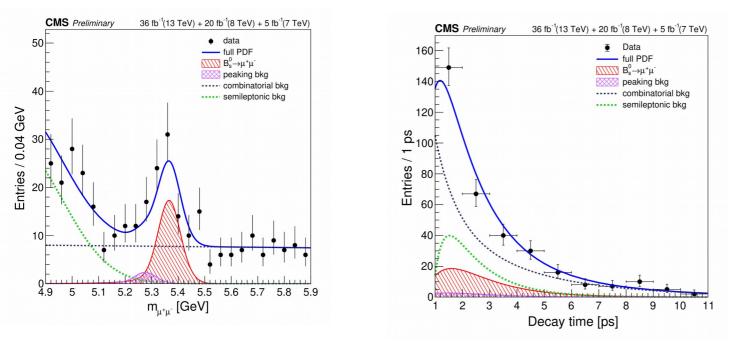

- Higher $P_T(B_c^+)$ threshold at 15 GeV
- ~ 7600 candidates
- Resolution allows to separate both peaks
- $\Delta m_{exp} = 29 \pm 1.5 \pm 0.7 \text{ MeV}$
- M(B₊(2s)) = 6871.0 ± 1.2 (stat.)±1.1 (syst) MeV
- Two states recently seen also by LHCb
 - ► Compatible masses and ∆m with CMS


Phys. Rev. Lett. 122 (2019) 132001

CMS

First observation of the $\Lambda_b^{} \rightarrow J/\psi \Lambda \varphi ~CMS$

<u>CMS-PAS-BPH-19-002</u>

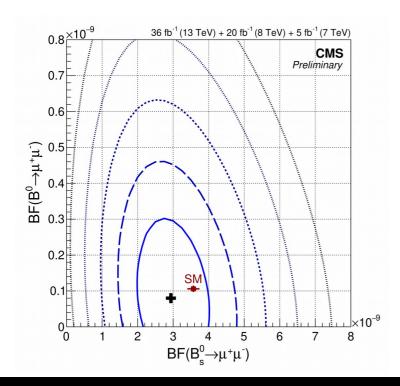

- Br($\Lambda_b \rightarrow J/\psi \Lambda \phi$)/Br($\Lambda_b \rightarrow \psi(2S)\Lambda$)=(8.26 ± 0.90 (stat) ± 0.68 (syst) ± 0.11(Br)) × 10-2
- Calculated by callibration to $Br(\Lambda_b \rightarrow \psi(2S)\Lambda)$

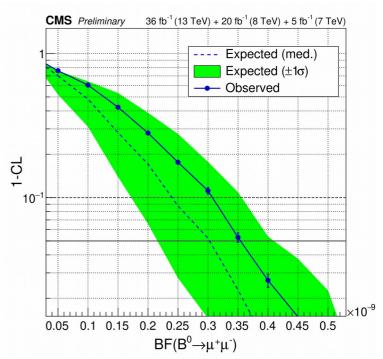
 $\frac{\mathcal{B}(\Lambda_{b}^{0} \to J/\psi \Lambda \phi)}{\mathcal{B}(\Lambda_{b}^{0} \to \psi(2S)\Lambda)} = \frac{N(\Lambda_{b}^{0} \to J/\psi \Lambda \phi)\mathcal{B}(\psi(2S) \to J/\psi \pi^{-}\pi^{+})\epsilon(\Lambda_{b}^{0} \to \psi(2S)\Lambda)}{N(\Lambda_{b}^{0} \to \psi(2S)\Lambda)\epsilon(\Lambda_{b}^{0} \to J/\psi \Lambda \phi)\mathcal{B}(\phi \to K^{+}K^{-})},$

Rare decays

Measurement of $B_{s}^{0} \rightarrow \mu\mu$ and search $B_{0} \rightarrow \mu\mu$

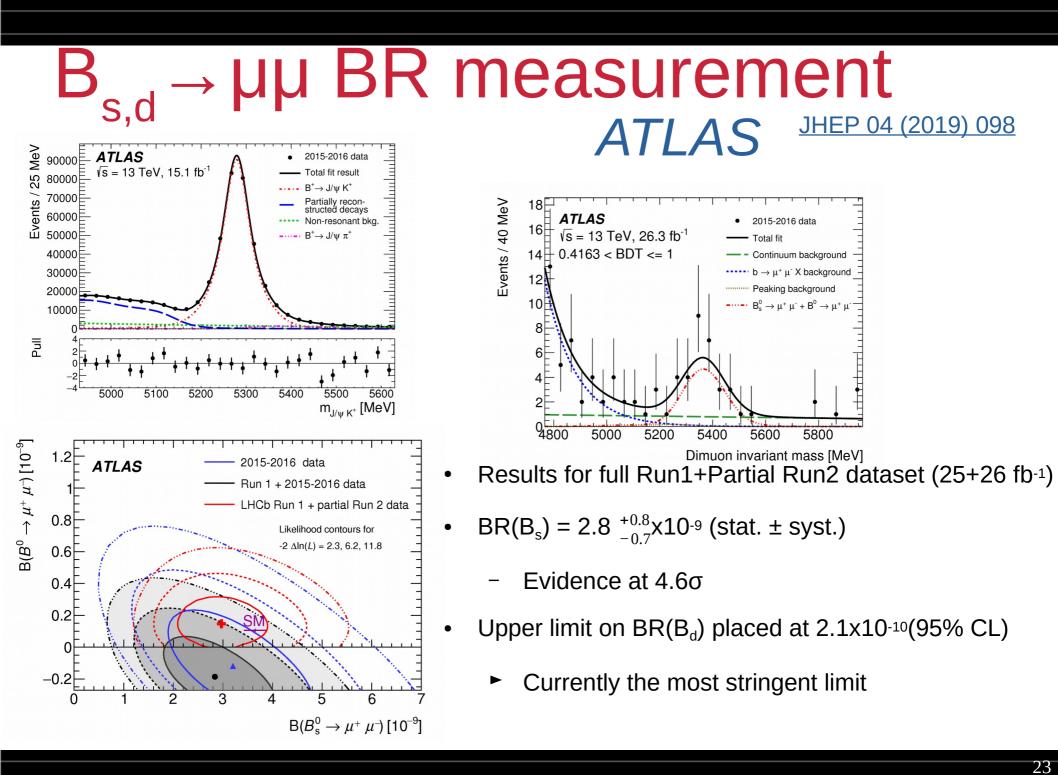
- Leptonic B meson decays offer excellent opportunities to perform precision tests of the SM due to minimal uncertainties
- $B^{_0}{}_s \to \mu \mu$ was first observed by CMS and LHCb jointly, but $B^{_0} \to \mu \mu$ is still not observed yet
- Data sets: 5 and 20 fb⁻¹ in 2011 and 2012 at 7 TeV and 8 TeV(Run 1), 36 fb⁻¹ in 2016 at 13 TeV(Run2)

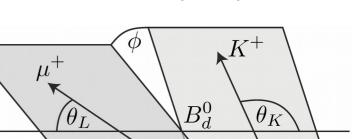



CMS

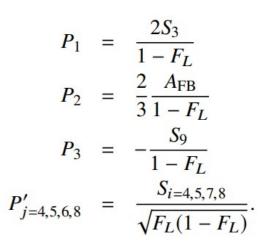
CMS-PAS-BPH-16-004

Measurement of $B_s^0 \rightarrow \mu\mu$ and search $B_0^0 \rightarrow \mu\mu$


- The B⁰_s $\rightarrow \mu\mu$ decay is observed (expected) with a significance of 5.6 σ (6.5 σ) and the time integrated branching fraction is measured to be B(B⁰_s $\rightarrow \mu\mu$) = [2.9 $^{+0.7}_{-0.6}$ (exp) ± 0.2 (frag)] ×10⁻⁹,
- No significant B⁰ $\rightarrow \mu\mu$ signal is observed and an upper limit B(B⁰ $\rightarrow \mu\mu$) < 3.6 × 10⁻¹⁰ is determined at 95% CL
- B_{s}^{0} life time is measured $\tau_{\mu\mu} = 1.70 + 0.61 0.44$ ps

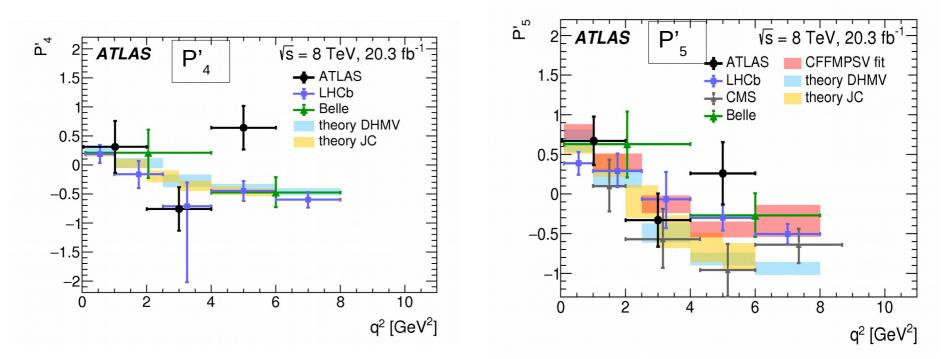

$B_{s,d} \rightarrow \mu\mu BR measurement_{ATLAS}$

- Rare but clean decay suppressed by FCNC in the SM
 - BR($B_s \rightarrow \mu\mu$) = (3.65 ± 0.23)x10⁻⁹
 - BR($B_d \rightarrow \mu\mu$) = (1.06 ± 0.09) x10⁻¹⁰
- Sensitive to New Physics contributions through loops
- Hadronisation Analysis strategy: probabilities $B(B_s^0 \rightarrow \mu\mu) = N(B_s^0 \rightarrow \mu\mu) \times [B(B^+ \rightarrow J/\psi K^+)] \times B(J/\psi \rightarrow \mu\mu) \times (\frac{f_u}{f_{uu}}) \times (\frac{1}{D_{uuu}})$ $D_{norm} = \sum_{k} N_{J/\psi K}^{k} \alpha_{k} \left(\frac{\varepsilon_{\mu\mu}}{\varepsilon_{J/\psi K}} \right)_{k}$ Number of Bs/Bd events from an Reference channel: unbunned ML fit to $B^{\pm} \to J/\psi K^{\pm}$ Trigger categories m(µµ) distribution Acceptance and and luminosity Extracted from an efficiencies from unbinned ML fit to prescales simulation $m(\mu\mu K^{\pm})$ distribution

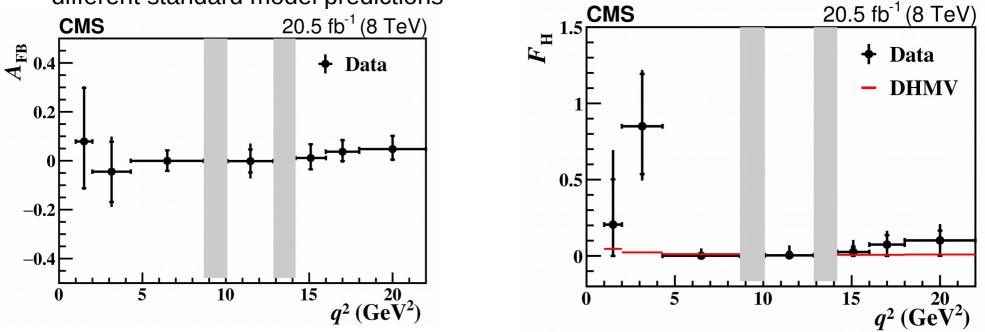


Angular analysis of $B_d \rightarrow K^* \mu \mu ATLAS$

- The study is using 20.3 fb⁻¹ at 8 TeV
- Decay amplitude fully described by the invariant mass q^2 of the di-muon system and three angles: θ_L , θ_K and Φ
- S_i-angular coefficients, F_L- fraction of longitudionally polarised K*
- P'i less sensitive to form factor uncertainties at leading order
- LHCb reported a
 - ► 3.4*\sigma* excess in P'5 parameter
 - Similar excess in Bs $\rightarrow \phi \mu \mu$ vs q2



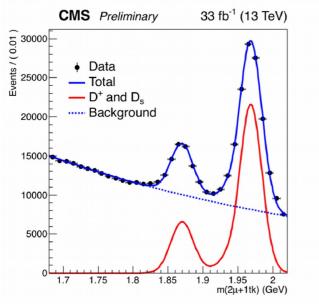
JHEP 10 (2018) 047

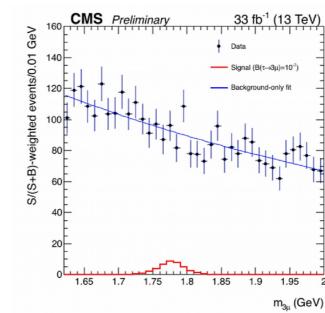


- largest deviation ~2.7 σ from theoretical model for in P'₄ and P'₅ in q² \in [4,6] GeV² bin
- results consistent with other experiments
 - deviation in P'5 coherent with LHCb measurement

Angular analysis of the decay $B^+ \rightarrow K^+ \mu \mu$ CMS

Phys. Rev. D 98 (2018) 112011

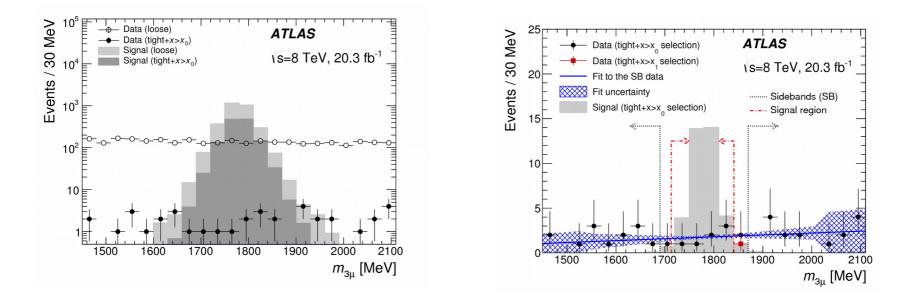

- The decay $B^+ \rightarrow K^+\mu\mu$ is a manifestation of a flavor changing neutral current process of the type $b \rightarrow sl^+l^-$
- A_{FB} forward-backward asymmetry and contribution F_{H} from the pseudoscalar, scalar, tensor amplitudes to the decay width
- In the SM, A_{FB} is zero up to small corrections, and F_{H} is also small
- The results are consistent with previous measurements, and are also compatible with different standard model predictions



$\tau \to \mu \mu \mu \ BR \ measurement$

CMS-PAS-BPH-17-004

- τ from Ds and B decays
- Maximum Likelihood fit in m(µµµ) simultaneously for the six categories (3 mass resolution regions X 2 BDT score regions)
- No excess observed. An upper observed (expected) limit of 8.8(9.9) $\times 10^{-8}$ is set on the branching fraction BR($\tau \to 3\mu$) at 90% CL



$\tau \rightarrow \mu \mu \mu$ BR measurement

ATLAS Eur. Phys. J. C (2016) 76:232

- τ from W $\rightarrow \tau \nu$ decays (20.3 fb⁻¹ at 8 TeV)
- $Br(\tau \rightarrow 3\mu) = \frac{N_s}{(A_s \times \varepsilon_s) N_{W \rightarrow \tau \nu}}$
- $N_{W \to \tau \nu} = (2.41 \pm 0.08) \times 10^8$
- No events are observed in the signal region for the final selection. Br($\tau \rightarrow 3\mu$) upper limit an observed(expected) 3.76(3.94)×10⁻⁷

$\tau \rightarrow \mu \mu \mu$ BR measurement

- No signal observed
- Br($\tau \rightarrow 3\mu$) < 2.1 × 10⁻⁸ Belle
 - (Phys. Lett. B687 (2010) 139143)
- Br($\tau \rightarrow 3\mu$)<8.8×10⁻⁸ CMS
 - (<u>CMS-PAS-BPH-17-004</u>)

- (<u>JHEP 02 (2015) 121</u>)

- Br($\tau \rightarrow 3\mu$)<3.76×10-7 ATLAS
- - (Eur. Phys. J. C (2016) 76:232)

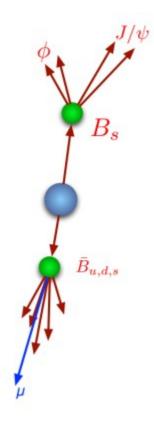
29

• Br($\tau \rightarrow 3\mu$) < 4.6 × 10⁻⁸ LHCb

CP Violation

- CPV occurs due to interference between a direct decay and a decay with B_s \overline{B}_s mixing
- Small CPV phase in SM \rightarrow Ideal place for New-Physics!
- Essential ingredients at hadron colliders:
 - Good time resolution to measure the oscillation accurately
 - ► Flavour tagging (i.e. distinguish the "B_s side" of the event)
- The final state J/ $\psi(\rightarrow \mu\mu) \phi(\rightarrow KK)$ is a superposition of CP=+1 and CP=-1 configurations

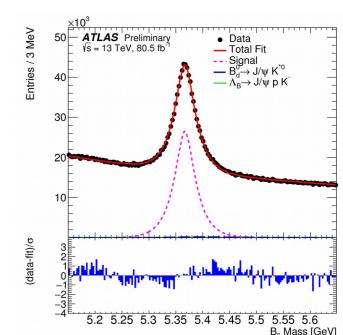
$$\phi_{s} \equiv -2\beta_{s} = -2 \arg\left(\frac{-V_{ts}V_{*_{tb}}}{V_{cs}V_{*_{cb}}}\right) = -0.04 rad$$

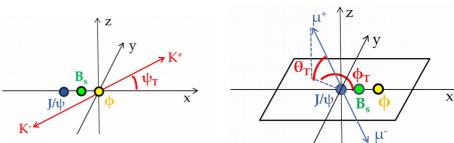

Flavour tagging

Opposite side tagging (to identify the flavour of neutral meson is extracted of the other(or opposite) b-hadron from the pair of b and \overline{b} quarks)

- Use $b-\overline{b}$ correlation to determine initial signal flavour from the other B-meson in the event
- b \rightarrow l transition are clean tagging method
- b \rightarrow c \rightarrow l and neutral B-meson oscillations dilute the tagging
- Provide probability of signal candidate to be B_{s}^{0} or \overline{B}_{s}^{0}
- Tagger types :
 - ► tight muon, low-p_T muon, electron, b-tagged jet
- Signal flavour probability derived from charge of $p_{\rm T}$ weighted tracks in a cone around the opposite side primary object (e±, $\mu\pm$, b-jet)

$$Q_{\mathrm{x}} = rac{\sum_{i}^{N ext{ tracks}} q_i \cdot (p_{\mathrm{T}i})^{\kappa}}{\sum_{i}^{N ext{ tracks}} (p_{\mathrm{T}i})^{\kappa}}$$

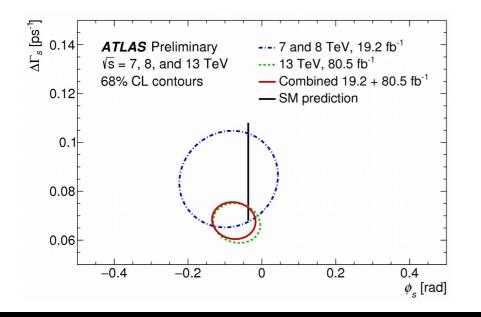

ATLAS



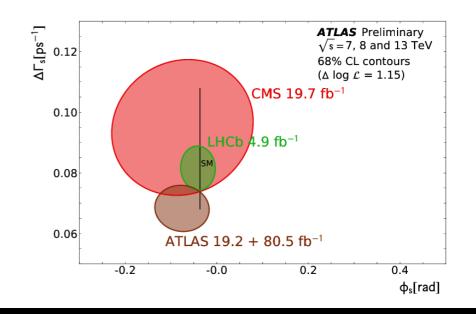
CPV in $B_s \rightarrow J/\psi \phi$

ATLAS

- ATLAS result: <u>ATLAS-CONF-2019-009</u>
- Angular analysis with 10 amplitude functions is done
- Simultaneous fit in Bs mass, lifetime, and the three angles
- Extraction of the amplitude parameters and phases with correlations
- Main systematics:
 - Tagging for φs
 - Fit models for signal and background for $\Gamma_{_{S}}$ and $\Delta \Gamma_{_{S}}$

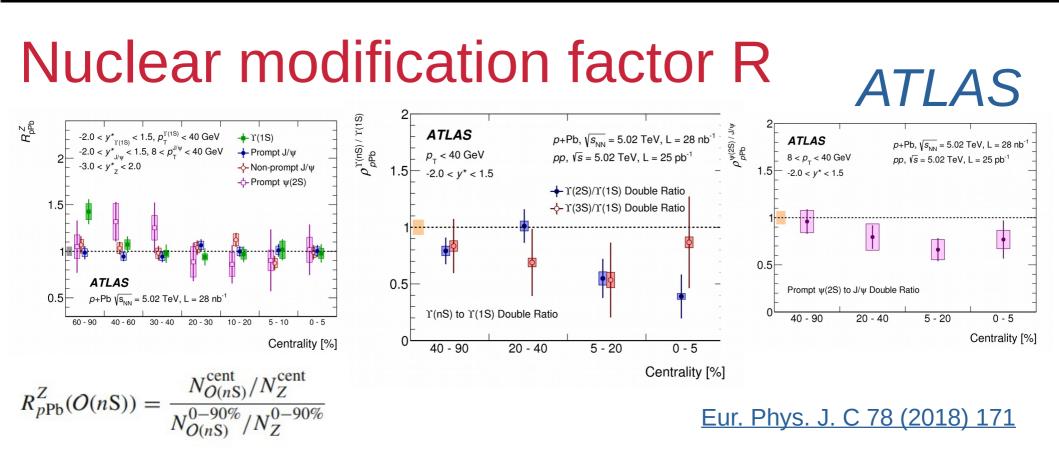


CPV in $B_s \rightarrow J/\psi\phi$


ATLAS-CONF-2019-009

ATLAS results:

- φ_s = -0.076 ± 0.034 (stat.) ± 0.019 (syst.) rad
- ΔΓ_s = 0.068 ± 0.004 (stat.) ± 0.003 (syst.) ps⁻¹
 φ_s (combined)=-0.055±0.021 rad


Parameter	Value	Statistical	Systematic
		uncertainty	uncertainty
ϕ_s [rad]	-0.076	0.034	0.019
$\Delta \Gamma_s [ps^{-1}]$	0.068	0.004	0.003
$\Gamma_s[\mathrm{ps}^{-1}]$	0.669	0.001	0.001
$ A_{ }(0) ^2$	0.220	0.002	0.002
$ A_0(0) ^2$	0.517	0.001	0.004
$ A_{S} ^{2}$	0.043	0.004	0.004
δ_{\perp} [rad]	3.075	0.096	0.091
δ_{\parallel} [rad]	3.295	0.079	0.202
$\delta_{\perp} - \delta_S$ [rad]	-0.216	0.037	0.010

Conclusion

- Several measurements in the B-phyiscs and light states areas have been shown
- Both ATLAS and CMS are able to constrain QCD and EW predictions and to give valuable inputs to theoretical models for spectroscopy and quarkonia
- Both experiments can be competitive with LHCb in few areas
- Both experiments are analysing now the full Run2 dataset → new results soon!

Backup

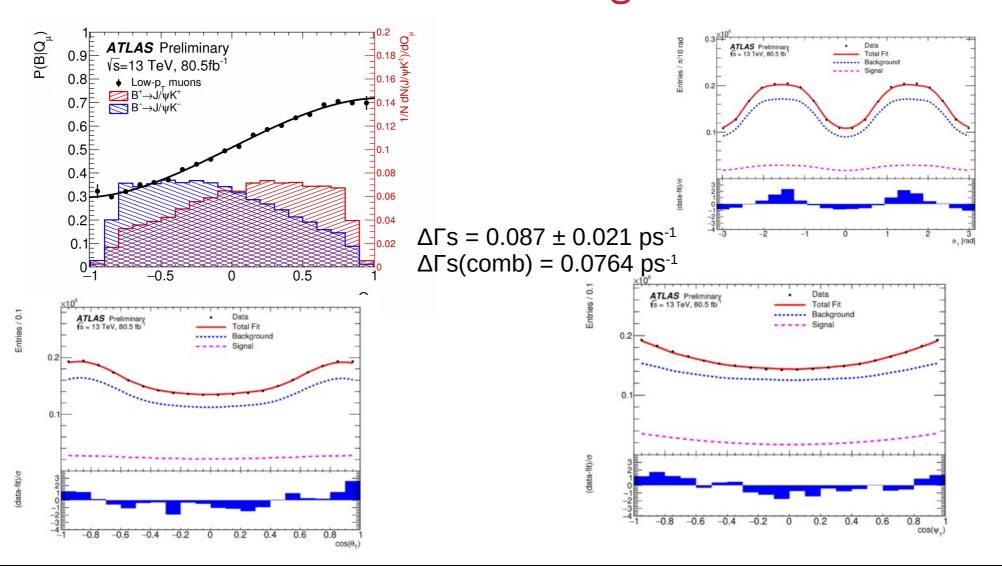
- The behaviour of the ground-state yields as a function of centrality is found to match that of Z bosons, while excited states are relatively suppressed in more central collisions
- A stronger cold nuclear matter effect is observed in excited quarkonium states compared to that in ground states

$B_{s,d} \rightarrow \mu \mu BR measurement$

• Measurement by CMS and LCHb (combined):

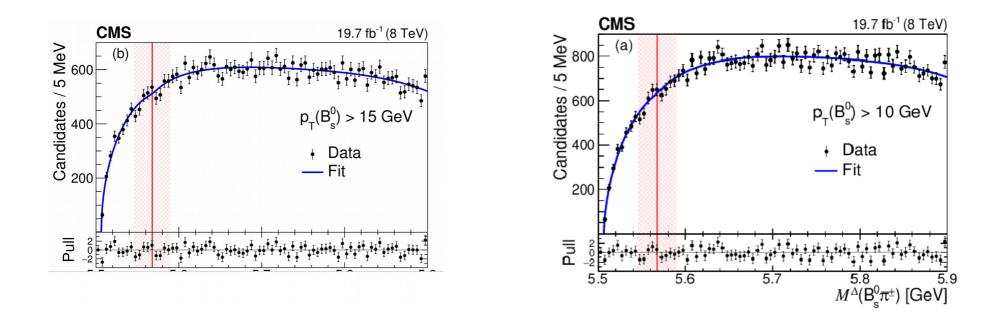
BR($B_s \rightarrow \mu\mu$) = 2.8*10⁻⁹ 3.0*10⁻⁹ LHCb-only(Run2)

 $\mathsf{BR}(\mathsf{B}_{\mathsf{d}} \to \mu\mu) = 3.9^* 10^{\text{-10}} < 3.4^* 10^{\text{-10}}$


• CMS last result:

BR(B₀_s $\rightarrow \mu\mu$) = 2.9*10⁻⁹ BR(B_d $\rightarrow \mu\mu$) < 3.6*10⁻¹⁰

• ATLAS last result:


BR(B₀_s $\rightarrow \mu\mu$) = 2.8*10⁻⁹ BR(B_d $\rightarrow \mu\mu$) < 2.1*10⁻¹⁰

CP violation in $B_s \rightarrow J/\psi \phi$

Search for the X(5568) $\rightarrow B^0_s \pi \pm in pp$ collisions at 8 TeV CMS

- ρ_x< 1.1% at 95% CL for p_T(B⁰_s)> 10 GeV
- ρ_x< 1.0% at 95% CL for p_T(B^o_s)> 15 GeV
- $\rho_{x^{LHCb}} < 2.4 \%$ at 95% CL

