PHENIX Experiment Highlights

Alexandre Lebedev (Iowa State University) for the PHENIX Collaboration

The XXIV International Workshop on High Energy Physics and Quantum Field Theory September 22 – September 29, 2019 Sochi, Russia

Huge amount of data collected by PHENIX

√s [GeV]	_p+p	p <mark>+Al</mark>	piau	d+Au	3Hetau	Curton	Cu+Au	Au+Au	U+U
510									
200		Ø	Ø	Ø		Ø			
130									
62.4						Ø		Ø	
39				Ø				Ø	
27								Ø	
20				Ø					
14.5									
7.7									

PHENIX at RHIC: 16 years of running, 9 collision species, 9 collision energies 196 papers published, 12 in the past year (2018)

Talk Outline

Spin physics (polarized proton beams)

 $W^{\pm} A_{I}$ results $h^+ A_N$ results $J/\psi A_N$ results ηA_N results New! Small systems (p/d/3He + A) Longitudinal dynamics in small systems Small systems geometry scan J/ψ in p+Al and p+Au and 3He+Au New! ϕ meson nuclear modification factors New! Drell-Yan measurement in p+p and p+Au New! Direct photon measurements in p/d+Au New! Large systems (heavy ions) Single particle suppression: multiple species and collisions New! Strangeness and nuclear modification factor New! Spectra of charm and bottom in p+p Now published (Phys. Rev. D 99, 092003 (2019)) Flow of charm and bottom in Au+Au New!

```
Now published (Phys. Rev. D 98, 032007 (2018))
Just submitted (arXiv:1903.07422)
Now published (Phys. Rev. D 98, 012006 (2018))
```

Now published (Phys. Rev. Lett. 121, 222301 (2018)) Now published (Nature Physics 15, 214-220 (2019))

Spin Physics

Proton spin is not just a sum of three valence quark spins

Jaffe-Manohar sum rule: $S_p = \frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + L_z$

PHENIX @ RHIC aims at both longitudinal spin structure and transverse spin phenomena

W[±] longitudinal single-spin asymmetry A_L

- P : avg. polarization of each beam
- N+ (N-) : yields in same (opposite) helicity
- $R = \frac{L++}{L+-}$: relative luminosity

A_L sensitive to light sea quarks. Consistency between PHENIX, STAR, global fits

Transverse single-spin asymmetry A_N

$$A_N = \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R} = \frac{1}{P} \times \frac{N_L - N_R}{N_L + N_R}, \quad X_F = \frac{2p_Z}{\sqrt{s}} \sim (x_1 - x_2)$$

 A_N expected to be small in conventional pQCD calculations

Transverse single-spin asymmetry for h⁺ in p+A

- PDF modification in nuclei (nuclear shadowing)
- Gluon saturation (CGC)
- Multiple scattering

Clear and strong dependence on nuclear target size $A^{1/3}$ (α = 1.21) Very similar dependence on N_{coll} (centrality) (β = 1.19)

PHENIX Experiment Highlights

J/ψ transverse single-spin asymmetry

η transverse single-spin asymmetry

 ηA_N is consistent with zero (but noticeable structure) Dramatic improvement in statistical and systematic uncertainties over previous result

Spin Physics Summary

- $W^{\pm} A_{L}$ now published
- $h^+ A_N$ just submitted to PRL
 - Clear dependence of asymmetries on nuclear target, both A^{1/3} and N_{coll}
- New results on η A_{N}
 - Dramatic improvement in statistical and systematic precision over previous results
 - Results consistent with zero with some noticeable structure
- J/ ψ A_N now published
 - Illustrates importance of changing nuclear target in spin physics
 - Why is J/ ψ A_N non-zero in p+Au?

Small Systems ($p/d/^{3}He + A$)

Intermission: some nuclear physics concepts Nuclear Modification Factor R_{AA}

dN_{AA}/dy $\mathsf{R}_{\mathsf{A}\mathsf{A}}$

Yield in nucleus-nucleus collisions divided by p+pyields and scaled by the appropriate number of binary collisions N_{COLL}, which is calculated using Glauber model.

Centrality of collision is described by the number of participant nucleons N_{PART} or number of binary collisions N_{COLL}

Intermission: some nuclear physics concepts Collective Flow

In general, azimuthal distribution of the final state particles can be decomposed into Fourier series

$$rac{\mathrm{d}N}{\mathrm{d}\phi} \propto 1 + \sum_n 2 v_n \left(p_\mathrm{T}
ight) \cos \left(n \left(\phi - \psi_n
ight)
ight)$$

Spatial asymmetry represented by eccentricity

$$arepsilon_n = rac{\sqrt{\left< r^n \cos(n\phi) \right>^2 + \left< r^n \sin(n\phi) \right>^2}}{\left< r^n
ight>}$$

translates into momentum flow described by Fourier coefficients v_n

Longitudinal dynamics in small systems ($dN_{ch}/d\eta$)

Phys. Rev. Lett. 121, 222301 (2018)

p+Al, p+Au, d+Au, and ³He+Au

Good agreement with Wounded Quark Model (M. Barej, A. Bzdak, and P. Gutowski Phys. Lett. B739, 308, 2014).

and 3-D Hydrodynamics (P. Bozek and W.Broniowski, Phys. Lett. B739, 308, 2014).

Longitudinal dynamics in small systems (flow)

Phys. Rev. Lett. 121, 222301 (2018)

v₂ agrees with 3-D hydro for p+Au and d+Au In ³He+Au, 3-D hydro overpredicts the forward rapidity

Testing hydrodynamic models by controlling geometry

p+Au, d+Au and 3He+Au collisions have different elliptic and triangular eccentricities (ε_2 and ε_3)

 v_2 and v_3 ordering

- v_2 and v_3 ordering matches ε_2 and ε_3 ordering in all systems - Regardless of the mechanism, the correlation is geometrical

PHENIX Experiment Highlights

Theory comparison

 v_2 and v_3 vs p_T described very well by hydro in all three systems

iEBE-VISHNU: C. Shen et al., Phys. Rev. C 95, 014906 (2017). SONIC: M. Habich et al., Eur. Phys. J. C 75, 15 (2015).

PHENIX Experiment Highlights

 J/ψ in p+Al and p+Au

- Almost no modification in p+Al
- Significant suppression at low p_T in p+Au in both directions.

 J/ψ in ³He+Au

No difference with increasing projectile size.

 ϕ mesons in p+Au

Despite mass difference and strangeness, in p+Au collisions ϕ shows similar modification to π^0

 ϕ meson in ³He+Au

Drell-Yan in p+p from μ - μ angular correlations

arXiv:1805.04075 arXiv:1805.02448

Well described by PYTHIA and NLO

Drell-Yan in p+Au

Hint of modification of Drell-Yan in p+Au, although large uncertainties prevent a firm conclusion

Direct Photon Yields in p+p and A+A

arXiv:1805.04084, accepted by Phys. Rev. Lett. 123, 022301 (2019)

Common scaling independent of collision energy or centrality for Au+Au and Pb+Pb at different energies;

Very different from N_{coll} -scaled p+p

Direct Photons in p/d + Au

Small systems summary

- Comprehensive set of measurements of longitudinal dynamics
 - Good support for wounded quark model and 3D hydro
- Geometry scan results published in Nature Physics
 - Only hydro can describe all the data
- J/ ψ in p/d/3He + A
 - Modification depends on target size, but not projectile size
- Modification of ϕ meson is very similar to that of π^0 despite differences in mass and strangeness content
- First measurement of Drell-Yan in small systems at RHIC - Hint of enhancement but no firm conclusions
- Photon enhancement in small systems is an important additional evidence in support of QGP droplet formation in small systems

Heavy lons

Summary of suppression in Au+Au

- Photons unmodified
- Baryons are not suppressed at intermediate $\ensuremath{p_{\text{T}}}$
- φ is an outlier at low p_{T}

Nuclear suppression in Cu+Au

Again ϕ is an outlier at low p_T , but ω and K_S follow π^0 and η trend at high p_T

Strangeness for different collision species

 $\omega\,$ and ϕ mesons behave similarly in Cu+Cu, Cu+Au, and Au+Au when selecting for similar N_{part}

PHENIX Experiment Highlights

Strangeness in U+U

Suppression similar for all species including strange mesons at high p_T

$c \rightarrow e$ and $b \rightarrow e$ in p+p and Au+Au

Phys. Rev. D 99, 092003 (2019)

HF electron spectra, all centralities and using all available data New p+p reference data; **new publication with R_{AA} on the way!**

Charm and Bottom Flow in Au+Au

First bottom flow measurement at RHIC Charm flows less than light-flavor hadrons, a hint of bottom flow

PHENIX Experiment Highlights

Heavy Ion Physics Summary

- Single particle R_{AA} independent of collision species when selecting for similar N_{PART}
- Strangeness appears to be important at low p_T but not at high p_T
- Measurement of c \rightarrow e and b \rightarrow e spectra in p+p - Publication with new R_{AA} coming soon
- First measurement of bottom flow at RHIC
 Refinements and publication forthcoming

Backup Slides

The PHENIX Experimental Setup

- **Central Arms** $(|\eta| < 0.35, \Delta \phi = \frac{\pi}{2} \times 2)$
 - VTX (Si pixel and strip, from 2011)
 - Tracking: DC, PC
 - pID: RICH, ToF
 - EMCal: PbGl, PbSc

- **Muon Arms** (1.2 < |η| < 2.2 (S) or 2.4 (N), Δφ = 2π)
 - FVTX (Si strip, from 2012)
 - Tracking: MuTr (CS chambers)
 - pID: MuID (steel interleaved larocci tubes), RPCs
- MPC/MPC-Ex (3.1 < |η| < 3.8, Δφ = 2π)
 - EMCal (PbWO₄) / Preshower by W + Si minipads