

The XXIV International Workshop High Energy Physics and Quantum Field Theory September 22–29 2019, Sochi, Russia

Production of Σ^0 hyperon at LHC with ALICE

- Introduction
- Detection of Σ^0
- Σ^0 world data and Σ^0/Λ cross section ratio
- Tests of QCD inspired MC event generators
- Summary and outlook

Resonances

A resonance is the peak located around a certain energy found in differential cross sections of scattering experiments (Wikipedia). The width of the resonance (Γ) is related to its lifetime (τ) by the relation $\Gamma = \frac{\hbar}{\tau}$, where $\hbar = \frac{h}{2\pi}$.

PDG	parameters	of	studied	hadronic	resonances	and	ground	states
-----	------------	----	---------	----------	------------	-----	--------	--------

Particle	Quarks	Mass	Width	Lifetime	Decay*	Branching
		$({\sf MeV}/c^2)$	$({\sf MeV}/c^2)$	(fm/c)		ratio (%)
$ ho^0$	$(u\bar{u} + d\bar{d})/\sqrt{2}$	770	150	1.3	$\pi^+\pi^-$	100
K^{*0}	$dar{s}$	896	47.4	4.17	π^-K^+	66.7
ϕ	$sar{s}$	1019	4.27	46.2	K^-K^+	48.9
Λ	uds	1115	~ 0	7.89 cm	p $+\pi^{-}$ (1)	63.9
$\Lambda(1520)$	uds	1520	15.7	12.6	K^-p	22
Σ^0	uds	1192	~ 0	22 200	$\Lambda + \gamma$ (2)	100
$\Sigma(1385)^{+}$	uus	1383	36.0	5.51	$\Lambda + \pi^+$	87.0
$\Sigma(1385)^{-}$	dds	1387	39.4	5.01	$\Lambda + \pi^-$	87.0
Ξ^{-}	dds	1321	~ 0	4.91 cm	$\Lambda + \pi^-$ (1)	99.9
$\Xi(1530)^{0}$	uss	1532	9.1	21.7	$\Xi^- + \pi^+$	42.6

*Decay: strong if no label, 1 - weak, 2 - electromagnetic

Measured in pp (0.9, 2.76, 5.02, 7.0, 8.0, 13.0 TeV), p-Pb (5.02, 8.16 TeV), Xe-Xe (5.44 TeV) and Pb-Pb (2.76, 5.02 TeV) collisions at ALICE

Resonances in different collision systems

- Copiously produced and measurable in different collision systems
 - \implies benefit from precise measurements of p_{T} spectra and yields
- pp: baseline measurements
 - contribution to the understanding of hadron production mechanisms
 - tuning of QCD inspired Monte Carlo event generators
 - onset of collectivity
- p-Pb: cold nuclear matter effects, onset of collectivity
- Pb-Pb: properties of the hadronic phase and collectivity.
 - Different quark contents allow to study flavor dependence of energy loss in Pb-Pb collisions.
 - Resonances with different lifetimes are used to study the properties of the hadronic phase in Pb-Pb collisions

Σ^0 in pp collisions

- No experimental measurements at energies larger than 91 GeV.
- Constrain feed-down corrections for protons, pions and direct photons at low transverse momenta.
- Discrimination of prompt and decay hyperons: prompt Λs vs ones from Σ^0 decay.
- Comparison with the Λ baryon, which has the same quark content but different isospin.
- Contribution to the understanding of hadron production mechanisms, input and comparison with statistical hadronisation models such as THERMUS.
- Reference for tuning Monte Carlo event generators such as PYTHIA, EPOS and DIPSY.
- Baseline for comparison with PbPb data.

Topology of the detection of $\Sigma^0 \to \Lambda + \gamma$ and $\overline{\Sigma}^0 \to \overline{\Lambda} + \gamma$

The ALICE detector

ITS, TPC and TOF are mainly used for the for reconstruction and identification of tracks V0A+V0C and ZDC for multiplicity, centrality, trigger and timing. Unique particle identification, high granularity, tracking down to $p_{\rm T}$ 0.1 GeV/c. Size 16× 26 meters, weight ~ 10000 tons.

Λ ($\bar{\Lambda}$) $\rightarrow p\pi^{-}(\bar{p}\pi^{+})$ detection

(ALICE collab., Eur. Phys. J. C 73 (2013) 2496)

• secondary vertex (V^0) with oppositely charged tracks

- V⁰ radius $R = \sqrt{x_{V^0}^2 + y_{V^0}^2} \ (0.5 < R < 180 \text{ cm})$
- distance of closest approach (b) between positive (neg.) track and primary vertex > 0.06 cm
- pointing angle θ_{Λ} between P and a vector connecting the primary vertex and the V0 position $\cos\theta_{\Lambda} > 0.993$
- for Σ^0 analysis Λ selected in narrow region of 1.110 < $M_{\Lambda \ (\bar{\Lambda} \)}$ < 1.20 GeV/ c^2

Photon detection in ALICE

- EMCAL: large acceptance (100°, $|\eta| < 0.9$) but limited energy resolution
- PHOS: good energy resolution but limited acceptance (60°, $|\eta| < 0.135$)
- Photon Conversion Method (PCM)
 - good momentum resolution at low $p_{\rm T}\,\sim\,1-5$ %
 - excellent particle identification capabilities in large $p_{\rm T}\,$ range 0.1 20 GeV/c
 - full azimuthal angle coverage ($|\eta| < 0.9$)
 - small conversion probability (~ 8.5 %)

PERF-107348

γ reconstruction

- $e^+(e^-)$ track selection with track $p_{\rm T}$ > 50 MeV/c
- γ conversion vertex at distance to primary vertex 5 $< R < 180~{\rm cm}$
- cut on the angle between e^+e^- pair plane and the plane perpendicular to the magnetic field of the ALICE magnet
- remaining V0 (Λ , K⁰_S) removed with further selections: $q_T < 0.05$, corresponding to transverse momentum of e^+ with respect to the γ momentum.
 - \implies small contamination of the photon sample

 $\Sigma^0 \to \Lambda + \gamma$ and $\bar{\Sigma}^0 \to \bar{\Lambda} + \gamma$

- $\gamma \rightarrow e^+ + e^-$ is detected through the secondary V⁰ vertex with Photon Conversion Method (PCM) in the central barrel detectors
- The distribution of the conversion points is well reproduced by MC. The radiation thickness of the detector material integrated for R < 180 cm and $|\eta| < 0.9$ is determined to be 11.4 $\pm 0.5\%$ X₀ (ALICE, Int. J. Mod. Phys. A 29 (2014) 1430044).
 - \implies Clear Σ^0 invariant mass peak

PHBE726302

$\Sigma^0 \to \Lambda + \gamma ~{\rm and}~ \bar{\Sigma}^0 \to \bar{\Lambda} + \gamma ~{\rm decays}$

- Σ^0 invariant mass is calculated from the mass of the selected Λ and γ candidates. Note low $E_{\gamma} \approx 100$ MeV.
- Σ^0 mass resolution $\sigma_M^{PCM} = 2~{
 m MeV}/c^2$ at $2.8 < p_{
 m T} < 3.4~{
 m GeV}/c$
- Proof-of-principle: Σ^0 peak is also observed with photon detected in PHOS calorimeter, but with worse mass resolution.

Σ^0 mass and width

 \implies Reconstructed peak position is in good agreement with the PDG value: $M_{PDG}(\Sigma^0)=1192.642\pm0.024~{\rm MeV}/c^2$

 \implies The Σ^0 mass resolution is determined only by the detector resolution due to the short lifetime of the Σ^0 and is in agreement with the simulations

LI-PREL-73235

Σ^0 spectrum and Lévy-Tsallis fit

 γ conversion probability ($\sim 0.085)$

The $p_{\rm T}$ -integrated yield is determined by summing up the spectrum in the measured range and the extrapolation to $p_{\rm T}=0$ based on the Lévy-Tsallis fit.

 \sim 60% of the yield is in the extrapolated region between 0 and 1.1 GeV/c. Relative uncertainty of the yield due to the extrapolation is \sim 18%.

ALICE measurement and world data

• First measurement at LHC of $\frac{\Sigma^0}{\Lambda}$ cross section ratio complements world data from lower energies

• e^+e^- data at $\sqrt{s} = 91$ GeV from L3 experiment at LEP reported $\frac{\Sigma^0}{\Lambda} = 0.33 \pm 0.03$, where both Σ^0 and Λ detected in hadronic Z decays (M. Acciarri et al, L3 collab., Phys. Lett. B 479 (2000) 79-88.)

$p_{\rm T}$ -differential $(\Sigma^0 + \bar{\Sigma}^0)/2\Lambda$ ratio

 \implies More data are needed! LHC run II data are under analysis.

Tests of QCD-inspired MC event generators in pp data

ρ^0 and ϕ vs MC generators

- ho^0 : PYTHIA6 Perugia 2011 describes data within uncertainties for $p_{
 m T}$ > 1 GeV/c
- ϕ : PYTHIA D6T describes data

PUB-

161358

Σ^0 and Λ vs <code>PYTHIA6</code>

(ALICE, Phys. Rev. Lett. 111 (2013) 222301; D.D.Chinellato arXiv:1211.7298 [hep-ex])

 \implies PYTHIA6 Perugia-2011 clearly underestimates the production of both ground-state hyperons in the intermediate $p_{\rm T}$ -range

(ALICE, Eur. Phys. J. C 75 (2015) 1)

- PYTHIA underpredicts the data
- PYTHIA 4C with color reconnection gives qualitative agreement in spectral shape
- HERWIG predicts a much softer production than other models and data.
- SHERPA describes the spectral shape, but largely underestimates the yields

Summary

- First measurement of cross section ratio $(\Sigma^0 + \bar{\Sigma}^0)/2\Lambda$ at $\sqrt{s} = 7$ TeV at the LHC.
 - The results can help to constrain production models and contribute to the previously very limited set of world data.
 - Knowledge of Σ^0 production rates are important to constrain feed-down corrections for proton and pion spectra.
 - Dedicated paper is in preparation, analysis of ALICE p-Pb and Pb-Pb data has started.
- Hyperons call for finer tunes of MC models and generators
 - Reasonable agreement with QCD based generators is seen for ho and ϕ p_{T} -spectra.
 - Disagreement with the PYTHIA-based generators is observed for Λ , Σ^0 , $\Sigma(1385)^{\pm}$, and $\Xi(1530)^0 p_{\rm T}$ -spectra.

Further investigations are very interesting and needed

