On mass limits for scalar color octet from the LHC data on invariant mass spectra of $t\bar{t}$ production

> Martynov M.V., Smirnov A.D. Yaroslavl State University

> > 28.06.2017

Q F T H E P' 2017 The XXIII International Workshop High Energy Physics and Quantum Field Theory June 26–July 3, 2017 Yaroslavl, Russia

Outline

Introduction

- 2 MQLS-model scalar color octets scalar gluons
- ${f 3}$ Resonance contribution of scalar color octet to $tar{t}$ production
- 4 Summary

Extended color symmetries are attractive variants of the New Physics.

One of the new physics can be induced by the possible four color symmetry treating leptons as quarks of the fourth color [Pati,Salam'PRD10(1974)].

The Minimal four color Quark- Lepton Symmetry model (MQLS-model) is based on the gauge group [Smirnov'PLB346(1995)]

 $G_{\text{MQLS}} = SU_V(4) \times SU_L(2) \times U_R(1)$

as minimal group containing the four color symmetry of quarks and leptons In MQLS-model quarks and leptons form the $SU_V(4)$ -quartets $\psi_{{f paA}}$ (A = 1, 2, 3, 4, a = 1, 2, p = 1, 2, 3, ...)So each lepton have $SU_V(4)$ "color" A = 4Symmetry breaking $SU_V(4) \times SU_L(2) \times U_R(1)$ New particles: $\downarrow n_4$ Spin-1: Z'-boson, V_{α}^{\pm} vector leptoquarks $SU_C(3) \times U_{15}(1) \times SU_L(2) \times U_R(1)$ $\downarrow n_1$ Spin-0: $\Phi^{(1)}$, $\Phi^{(2)}_{a}$, $\Phi^{(3)}_{a}$, $\Phi^{(4)}_{a}$ $SU_C(3) \times SU_L(2) \times U(1)$ (4, 1, 1) (1, 2, 1) (15, 2, 1) (15, 1, 0)rep. – $G_{\rm SM} = SU_C(3) \times U_{em}(1)$ VEV - $\eta = \eta_{\rm SM} = \sqrt{\eta_2^2 + \eta_3^2}$ η_1 η_2 η_3 η_4

Martynov, Smirnov (YaSU) On mass limits for scalar color octet from the $t\bar{t}$ LHC data 28.06.2017 3 / 18

Scalars interacting with fermions

As a result of the Higgs mechanism of splitting the masses of quarks and leptons the MQLS-model predicts in addition to the SM Higgs doublet $\Phi^{(SM)}$ the existence of the new scalar $SU_L(2)$ -doublets

$$\begin{pmatrix} \Phi_1' \\ \Phi_2' \end{pmatrix}; \begin{pmatrix} S_{1\alpha}^{(+)} \\ S_{2\alpha}^{(+)} \end{pmatrix}; \begin{pmatrix} S_{1\alpha}^{(-)} \\ S_{2\alpha}^{(-)} \end{pmatrix}; \begin{pmatrix} F_{1c} \\ F_{2c} \end{pmatrix}$$

with electric charges

$$Q_{\Phi}^{em}: \quad \left(\begin{array}{c}1\\0\end{array}\right); \quad \left(\begin{array}{c}5/3\\2/3\end{array}\right); \quad \left(\begin{array}{c}1/3\\-2/3\end{array}\right); \quad \left(\begin{array}{c}1\\0\end{array}\right).$$

 $\Phi_{15}^{(3)}-\Phi^{(2)}\text{-mixing gives the SM Higgs doublet }\Phi^{(SM)}$ and an additional Φ' colorless scalar doublet.

 $S_{1lpha}^{(\pm)},\,S_{2lpha}^{(\pm)}$, lpha=1,2,3 form two scalar leptoquark doublets (doublet of scalar color triplets)

 $F_{1c}, F_{2c}, c = 1, 2 \dots 8$ form the scalar gluon doublet (doublet of scalar color octets).

The interactions of the neutral scalar gluon F_2 with quarks:

$$L_{F_{2}u_{i}u_{j}} = \bar{u}_{i\alpha} \Big[(h_{1F_{2}}^{L})_{ij} P_{L} \Big] (t_{k})_{\alpha\beta} u_{j\beta} F_{2k} + \text{h.c.}, L_{F_{2}d_{i}d_{j}} = \bar{d}_{i\alpha} \Big[(h_{2F_{2}}^{R})_{ij} P_{R} \Big] (t_{k})_{\alpha\beta} d_{j\beta} F_{2k} + \text{h.c.}$$

Scalar gluons F_2 couplings to fermions:

$$(h_{1F_{2}}^{L})_{ij} = -\sqrt{3} \frac{1}{\eta \sin \beta} \Big[m_{u_{i}} \delta_{ij} - (K_{1}^{R})_{ik} m_{\nu_{k}} (\overset{+}{K_{1}})_{kj} \Big], (h_{2F_{2}}^{R})_{ij} = -\sqrt{3} \frac{1}{\eta \sin \beta} \Big[m_{d_{i}} \delta_{ij} - (K_{1}^{L})_{ik} m_{l_{k}} (\overset{+}{K_{1}})_{kj} \Big].$$

 $K_1^{L,R}$ are some mixing matrices specific for MQLS-model (similar $V_{\rm CKM},$ $V_{\rm PMNS}$), η is SM VEV, β is a angle of $\Phi_{15}^{(3)}-\Phi^{(2)}$ -mixing in MQLS-model. The largest constant with neglect of the neutrinos masses takes the form

$$(h_{1F_2}^L)_{33} = -\sqrt{3} \frac{m_t}{\eta \sin \beta}$$

The interaction of the scalar gluon F_2 with t-quark can be written as

$$L_{F_{2}tt} = \bar{t}_{\alpha} (h_{F_{2}t\bar{t}}^{S} + h_{F_{2}t\bar{t}}^{P} \gamma_{5})(t_{c})_{\alpha\beta} t_{\beta} F_{2c} + \text{h.c.},$$

where scalar and pseudoscalar coupling constants take the form

$$h^S_{F_2 t \bar{t}} = h^P_{F_2 t \bar{t}} = -\frac{\sqrt{3}}{2} \frac{m_t}{\eta \sin \beta} \approx -0.61 / \sin \beta$$

 $h_{F_2 t \bar t}^{S,P}$ increase with decreasing $\sin eta$

the perturbation theory parameters $(h_{F_2 t \bar{t}}^{S,P})^2/4\pi \approx 0.03 \quad 0.06 \quad 0.18$ for $\sin \beta = 1 \quad 0.7 \quad 0.4$ Below we restrict ourselves by the mixing angle region $0.4 \leq \sin \beta \leq 1$ Width of the scalar gluon F_a is small

$$\Gamma(F_2 \to t\bar{t}) = m_{F_2} \frac{3}{32\pi} \left(\frac{m_t}{\eta}\right)^2 \left(1 - 2\frac{m_t^2}{m_{F_2}^2}\right) \sqrt{1 - 4\frac{m_t^2}{m_{F_2}^2}} \frac{1}{\sin^2\beta}.$$

For the masses $m_{F_2}=400-2000$ GeV the width F_2 is of about $(2-30)/\sin^2\beta$ GeV and $\Gamma_{F_2}/m_{F_2}=(0.5-1.5)\%/\sin^2\beta$ [Popov,Povarov et al. MPLA20(2005)]

Possibility of the direct searches scalar gluons at the LHC

- $m_{F_a} > 320\,{
 m Gev}$ from Tevatron data [Martynov,Smirnov'Quarks-2010 conf.]
- For Flavorful Top-Coloron model scalar octet $m_{G_H} > 440 \text{ GeV}$ [Chivukula,Simmons et al.'PRD88(2013)]
- Sgluons in SUSY models are EW singlets and have no direct interactions with quarks [Plehn, Tait' JPG36(2009)] ($m_G > 1.06$ TeV [Aad et al.(ATLAS)'J08(2015)])
- At $m_{F_1} \lesssim 1130 \, GeV$ from analysis statistical significance the number of the signal $t\bar{t}b\bar{b}$ events will exceed the SM background by 3σ (LHC 14 TeV $L = 10 \, fb^{-1}$) [Martynov,Smirnov/PAN73(2010)].
- The production cross section of scalar gluons F at the LHC with masses $m_F \lesssim 1300 \, GeV$ is shown to be sufficient for the effective ($N_{events} \gtrsim 100$) production of these particles at the LHC (14 TeV, $L = 10 \, fb^{-1}$) [Martynov,Smirnov'MPLA23(2008)].

The most perspective way to search for scalar gluons is analysis of processes $pp \rightarrow F_1F_1^* \rightarrow t\bar{t}b\bar{b}$ and $pp \rightarrow F_2F_2^* \rightarrow t\bar{t}t\bar{t}$. Another way is consideration of the resonance contribution of scalar gluons to $t\bar{t}$ production.

Scalar gluons tree processes

These contributions are suppressed by factors m_u^2/\hat{s} , m_d^2/\hat{s} or $|(V_{CKM})_{i3}|^4 - \Delta\sigma(p\bar{p} \to t\bar{t}) \sim 0.0001 \,\mathrm{pb}$ [Martynov,Smirnov'Quarks-2010 conf.].

Diagrams with account contribution of the $(gg\Phi)$ -effective vertex

Flavour diagonal interactions of scalar octet and of the scalar color singlet with quarks in the model independent form [Frolov,Martynov et al.'MPLA31(2016)]

$$L_{\Phi q\bar{q}} = \bar{q}_{\alpha} (h^{S}_{\Phi q\bar{q}} + h^{P}_{\Phi q\bar{q}}\gamma_{5})\Phi_{\alpha\beta}q_{\beta} + \text{h.c.},$$

 $\Phi_{\alpha\beta} = \Phi_0 \, \delta_{\alpha\beta}$ for the colorless scalar particle Φ_0 $\Phi_{\alpha\beta} = \Phi_{8c} \, (t_c)_{\alpha\beta}$ for the scalar octet Φ_8

The effective vertex $\Gamma^{(q)\mu\nu}_{ab\Phi}(p,k_1,k_2)$

Effective vertex $\Gamma^{\mu\nu}_{ab\Phi}(p,k_1,k_2)$ in the case of real gluons $(k_1^2=0, k_2^2=0, p^2=\hat{s}=2(k_1k_2))$

$$\begin{split} \Gamma^{\mu\nu}_{ab\Phi}(p,k_1,k_2) &= \sum_q \Gamma^{(q)\mu\nu}_{ab\Phi}(p,k_1,k_2) = \\ &= -C_{ab\Phi} \frac{\alpha_s \sqrt{\hat{s}}}{\pi} \left[\left(g^{\mu\nu} - \frac{2k_1^{\nu}k_2^{\mu}}{\hat{s}} \right) F_{\Phi}^S(\hat{s}) - 2i\varepsilon^{\mu\nu\rho\sigma} \frac{k_{1\rho}k_{2\sigma}}{\hat{s}} F_{\Phi}^P(\hat{s}) + \frac{2k_1^{\mu}k_2^{\nu}}{\hat{s}} \ G_{\Phi}^S(\hat{s}) \right] \\ F_{\Phi}^{S,P}(\hat{s}) &= \sum_q h_{\Phi q \bar{q}}^{S,P} \tilde{F}^{S,P}(\hat{s},m_q^2) \qquad G_{\Phi}^S(\hat{s}) = \sum_q h_{\Phi q \bar{q}}^S \tilde{G}^S(\hat{s},m_q^2) \\ C_{ab\Phi_0} &= \delta_{ab}/2 \equiv C_{ab} \qquad \text{for the colorless scalar particle } \Phi_0 \\ C_{ab\Phi_{8c}} &= d_{abc}/4 \equiv C_{abc} \qquad \text{for the scalar octet } \Phi_8 \end{split}$$

Form factors arising from quark q in the loop:

$$\begin{split} \tilde{F}^{S}(\hat{s}, m_{q}^{2}) &= \frac{m_{q}}{\sqrt{\hat{s}}} \left[\left(\hat{s} - 4m_{q}^{2} \right) C_{0}(0, 0, \hat{s}, m_{q}^{2}, m_{q}^{2}, m_{q}^{2}) - 2 \right] \equiv \tilde{F}^{S}(\rho_{q}), \\ \tilde{F}^{P}(\hat{s}, m_{q}^{2}) &= m_{q} \sqrt{\hat{s}} \ C_{0}(0, 0, \hat{s}, m_{q}^{2}, m_{q}^{2}, m_{q}^{2}) \equiv \tilde{F}^{P}(\rho_{q}), \\ \tilde{G}^{S}(\hat{s}, m_{q}^{2}) &= = \frac{m_{q}}{\sqrt{\hat{s}}} \left[\left(\hat{s} + 4m_{q}^{2} \right) C_{0}(0, 0, \hat{s}, m_{q}^{2}, m_{q}^{2}, m_{q}^{2}) + 4B_{0}(\hat{s}, m_{q}^{2}, m_{q}^{2}) - \frac{4A_{0}(m_{q}^{2})}{m_{q}^{2}} \right] \equiv \tilde{G}^{S}(\rho_{q}), \end{split}$$

 A_0 , B_0 , C_0 are the Passarino-Veltman integrals [Passarino, Veltman'NPB160(1979)]

We have calculated the cross section of the process $gg \rightarrow Q\bar{Q}$ in QCD LO with account also of the effective vertex $\Gamma^{\mu\nu}_{ab\Phi}$ The diagrams of this process

$$\begin{split} \tilde{C}_{\Phi_0}^{(1)} &= C_{ab}C_{ab} = 2, \\ \tilde{C}_{\Phi_0}^{(1)} &= C_{abc}C_{abc} = 5/6, \\ \tilde{C}_{\Phi_8}^{(1)} &= C_{abc}C_{abc} = 5/6, \end{split} \qquad \tilde{C}_{\Phi_8}^{(2)} &= C_{abc}C_{abc}/2 = 5/12 \end{split}$$

Contributions to cross section of $t\bar{t}$ -pairs production at LHC We calculate F_2 contributions to cross section of $t\bar{t}$ -pairs production at LHC (7,8,13 TeV).

 $\Delta \sigma^{F_2}(pp \rightarrow t\bar{t})$ varies from 0.3 to 54.9 pb (depending on $\sqrt{s}, m_{F_2}, \sin \beta$).

The invariant mass spectrum $d\sigma(pp \to t\bar{t})/dm_{t\bar{t}}$ of the $t\bar{t}$ -pair production in pp collisions at the LHC at energies $\sqrt{s} = 7, 8, 13$ TeV with account of the contributions of scalar gluon F_2 with masses $m_{F_2} = 450, 500, 550$ GeV for $\sin \beta = 1, 0.7, 0.4$.

The invariant mass spectrum of $t\bar{t}$ -pairs production at LHC Theoretical predictions

NNLL+aNNLO:[Ahrens,Ferroglia et al.'J1009(2010)]

NNLO: [Czakon,Heymes *et al.*'PRL116(2016), Czakon,Heymes *et al.*' (2017)], Experimental data

LHC CMS 8 TeV, $L = 19.7 \, fb^{-1}$ [Khachatryan *et al.*(CMS)'EPJC75(2015)] LHC ATLAS 8 TeV, $L = 20.3 \, fb^{-1}$ [Aad *et al.*(ATLAS)'EPJC76(2016)]

Exclusion area from $t\bar{t}$ invariant mass spectrum (ATLAS 8 TeV, 20.3 fb^{-1})

Martynov, Smirnov (YaSU) On mass limits for scalar color octet from the $t\bar{t}$ LHC data 28.06.2017 16 / 18

Summary

- The effective vertex of interaction of the scalar color octet with two gluons is calculated with account of the one loop quark contribution. With account of this interaction the contribution of the scalar color octet to the partonic cross section of resonance $Q\bar{Q}$ -pair production in the gluon fusion is calculated.
- The total and differential cross sections of the $t\bar{t}$ production in pp-collisions at the LHC are calculated with account of the resonance contribution of scalar color octet F_2 predicted by the minimal model with the four color quark-lepton symmetry
- Analysed in dependence on two parameters of the model, the F_2 mass m_{F_2} and mixing angle $\beta.$
- From the comparison with the ATLAS data on the differential cross sections of $t\bar{t}$ production at $\sqrt{s} = 8$ TeV it is shown that there is region of $(m_{F_2} \sin\beta)$ -plane of exclusion by these data. But for $\sin\beta = 1$ and for all the masses m_{F_2} the scalar color octet F_2 gives the contribution to this process of about a few percents and can not be visible in these data.

Backup slides

For numerical calculations we use the analytical expressions for scalar PV integrals A_0 , B_0 , C_0 from the Denner's paper [Denner'FP41(1993)] and we also perform the cross check with using LoopTools [Hahn,Perez-Victoria'CPC118(1999)].

We have calculated the cross section at $\sqrt{s} = 7, 8, 13$ TeV with using the parton distribution functions MMHT 2014 [Harland-Lang,Martin et al. EC75(2015)] (NNLO, $\mu = \mu_f = m_t$, $m_t = 173.21$ GeV).

For calculations we use the values of K-factors K(s) = 1.6687, 1.6752, 1.6833 for energies $\sqrt{s} = 7, 8, 13$ TeV respectively, in this case the cross section $\sigma^{\rm SM}(pp \rightarrow t\bar{t})$ reproduces well the aNNNLO SM predictions for the cross section of $t\bar{t}$ production [Kidonakis'PRD90(2014)].

Also we perform cross check our partons integrations with use PDFs CT14, METAv10 in the ManeParse (package for the Wolfram Mathematica for parsing various PDF functions) [Clark,Godat et al.'CPC216(2017)] — we get difference about 1%.

Fermion sector of the model

In MQLS-model quarks and leptons form the $SU_V(4)$ -quartets ψ_{paA} , $A = 1, 2, 3, 4, a = 1, 2, p = 1, 2, 3, \ldots$

$$\psi'_{p1A} : \begin{pmatrix} u'_{\alpha} \\ \nu'_{e} \end{pmatrix}, \begin{pmatrix} c'_{\alpha} \\ \nu'_{\mu} \end{pmatrix}, \begin{pmatrix} t'_{\alpha} \\ \nu'_{\tau} \end{pmatrix}, \cdots$$
$$\psi'_{p2A} : \begin{pmatrix} d'_{\alpha} \\ e^{-\prime} \end{pmatrix}, \begin{pmatrix} s'_{\alpha} \\ \mu^{-\prime} \end{pmatrix}, \begin{pmatrix} b'_{\alpha} \\ \tau^{-\prime} \end{pmatrix}, \cdots$$

Each lepton have $SU_V(4)$ "color"A = 4

Fermion mixing in MQLS

The basic left and right quark and lepton fields $Q'_{pa\alpha}^{L,R}$, $\ell'_{pa}^{L,R}$ can be written, in general, as superpositions

$$Q'_{pa\alpha}^{L,R} = \sum_{q} \left(A_{Q_a}^{L,R} \right)_{pq} Q_{qa\alpha}^{L,R}, \qquad l'_{pa}^{L,R} = \sum_{q} \left(A_{l_a}^{L,R} \right)_{pq} l_{qa}^{L,R},$$

of mass eigenstates $Q_{qa\alpha}^{L,R}$, $\ell_{qa}^{L,R}$. Here $A_{Qa}^{L,R}$ and $A_{\ell_a}^{L,R}$ are unitary matrices diagonalizing the mass matrices of quarks and leptons respectively. $(A_{Q_1}^L)^+ A_{Q_2}^L \equiv C_Q = V_{CKM}$ is Cabibbo-Kobayashi-Maskawa matrix $(A_{\ell_1}^L)^+ A_{\ell_2}^L \equiv C_\ell$ is the analogous lepton mixing matrix $((C_l)^+ = U_{PMNS})$ $(A_{Qa}^{L,R})^+ A_{\ell_a}^{L,R} \equiv K_a^{L,R}$ are the four new mixing matrices which are specific for the models with the four color symmetry.

Scalar sector of the MQLS-model

The scalar sector contains in general four multiplets [Smirnov'PLB346(1995)],

[Povarov,Smirnov'PAN64(2001)]

$$(4,1,1): \Phi^{(1)} = \begin{pmatrix} S_{\alpha}^{(1)} \\ \frac{\eta_1 + \chi^{(1)} + i\omega^{(1)}}{\sqrt{2}} \end{pmatrix}, (1,2,1): \Phi_a^{(2)} = \delta_{a2} \frac{\eta_2}{\sqrt{2}} + \phi_a^{(2)}, (15,2,1): \Phi_a^{(3)} = \begin{pmatrix} (\mathbf{F}_{\mathbf{a}})_{\alpha\beta} & \mathbf{S}_{\mathbf{a}\alpha}^{(+)} \\ \mathbf{S}_{\mathbf{a}\alpha}^{(-)} & 0 \end{pmatrix} + (\delta_{a2}\eta_3 + \phi_{15,a}^{(3)})t_{15}, (15,1,0): \Phi^{(4)} = \begin{pmatrix} F_{\alpha\beta}^{(4)} & \frac{1}{\sqrt{2}}S_{\alpha}^{(4)} \\ \frac{*}{S_{\alpha}}^{(4)} & 0 \end{pmatrix} + (\eta_4 + \chi^{(4)})t_{15}, \end{cases}$$

transforming according to the (4,1,1)-,(1,2,1)-,(15,2,1)-,(15,1,0)representations of the $SU_V(4) \times SU_L(2) \times U_R(1)$ -group respectively. Here $\eta_1, \eta_2, \eta_3, \eta_4$ are the vacuum expectation values. For the comparison of the experimental and theoretical results we use the variable χ^2_r ("reduced" χ^2) defined as

$$\chi_r^2 = \frac{1}{n} \sum_i^N \frac{(\sigma_i^{exp} - \sigma_i^{th})^2}{(\Delta \sigma_i^{exp})^2},$$

where σ_i^{exp} denote the experimental value of $\frac{d\sigma(pp \rightarrow t\bar{t})}{dm_{tt}}$ in the *i*-th bin, σ_i^{th} is the corresponding theoretical value, $\Delta \sigma_i^{exp}$ is the experimental error of this value, $n = N - N_p$ is the number of degrees of freedom, N is the number of the bins under consideration and N_p is the number of the free parameters of the model. $N_p = 0$ for the SM $N_p = 2$ for the MQLS-model.

$$\sigma_i^{th} = \overline{\frac{d\sigma(pp \to t\bar{t})_i}{dm_{tt}}} = \frac{1}{\Delta m_{tt}^{(i)}} \int\limits_{m_{tt}^{i-}}^{m_{tt}^{i+}} \frac{d\sigma(pp \to t\bar{t})}{dm_{jj}} dm_{tt}$$

Bibliography I

- J. C. Pati and A. Salam, Lepton number as the fourth 'color', *Phys. Rev. D* 10, 275 (Jul 1974).
- A. D. Smirnov, The minimal quark-lepton symmetry model and the limit on z'-mass, Phys. Lett. B 346, 297 (1995), hep-ph/9503239.
- A. D. Smirnov, Minimal four-color model with quark-lepton symmetry and constraints on the z'-boson mass, *Phys. At. Nucl.* 58, 2137 (1995), [Yad. Fiz. 58, 2252 (1995)].
- P. Y. Popov, A. V. Povarov and A. D. Smirnov, Fermionic decays of scalar leptoquarks and scalar gluons in the minimal four color symmetry model, *Mod. Phys. Lett.* A20, 3003 (2005), hep-ph/0511149.

Bibliography II

- I. V. Frolov, M. V. Martynov and A. D. Smirnov, Resonance contribution of scalar color octet to tt production at the LHC in the minimal four-color quark-lepton symmetry model, *Mod. Phys. Lett.* A31, 1650224 (2016), arXiv:1610.08409 [hep-ph].
- M. V. Martynov and A. D. Smirnov, Cross Section and Forward-Backward Asymmetry of tt Production in the Model with Four Color Symmetry, in Proceedings of the 16th International Seminar "Quarks-2010", Kolomna, Russia, 6-12 June, 2010, eds. V. A. Matveev, A. G. Panin and V. A. Rubakov, Quarks-2010, Vol. 2 (2010), arXiv:1010.5700 [hep-ph].
- R. S. Chivukula, E. H. Simmons and N. Vignaroli, Same-Sign Dileptons from Colored Scalars in the Flavorful Top-Coloron Model, *Phys. Rev.* D88, 034006 (2013), arXiv:1306.2248 [hep-ph].

Bibliography III

- T. Plehn and T. M. P. Tait, Seeking Sgluons, J. Phys. G36, 075001 (2009), arXiv:0810.3919 [hep-ph].
- ATLAS Collaboration, G. Aad *et al.*, Search for production of vector-like quark pairs and of four top quarks in the lepton-plus-jets final state in pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector, *JHEP* **08**, 105 (2015), arXiv:1505.04306 [hep-ex].
- M. V. Martynov and A. D. Smirnov, Production of colored scalar particles in *pp* collisions and masses of scalar gluons from future lhc data, *Phys. At. Nucl.* **73**, 1207 (2010).
- M. V. Martynov and A. D. Smirnov, Colored scalar particles production in *pp*-collisions and possible mass limits for scalar gluons from future LHC data, *Mod. Phys. Lett.* A23, 2907 (2008), arXiv:0807.4486 [hep-ph].

Bibliography IV

- G. Passarino and M. J. G. Veltman, One Loop Corrections for e+ e-Annihilation Into mu+ mu- in the Weinberg Model, *Nucl. Phys.* **B160**, 151 (1979).
- V. Ahrens, A. Ferroglia, M. Neubert, B. D. Pecjak and L. L. Yang, Renormalization-Group Improved Predictions for Top-Quark Pair Production at Hadron Colliders, JHEP 1009, 097 (2010), arXiv:1003.5827 [hep-ph].
- M. Czakon, D. Heymes and A. Mitov, High-precision differential predictions for top-quark pairs at the LHC, *Phys. Rev. Lett.* 116, 082003 (2016), arXiv:1511.00549 [hep-ph].
- M. Czakon, D. Heymes and A. Mitov, fastNLO tables for NNLO top-quark pair differential distributions (2017), arXiv:1704.08551 [hep-ph].

Bibliography V

- CMS Collaboration, V. Khachatryan *et al.*, Measurement of the differential cross section for top quark pair production in pp collisions at sqrt(s) = 8 TeV, *Eur. Phys. J.* C75, 542 (2015), arXiv:1505.04480 [hep-ex].
- ATLAS Collaboration, G. Aad *et al.*, Measurements of top-quark pair differential cross-sections in the lepton+jets channel in *pp* collisions at $\sqrt{s} = 8$ TeV using the ATLAS detector, *Eur. Phys. J.* **C76**, 538 (2016), arXiv:1511.04716 [hep-ex].
 - A. Denner, Techniques for calculation of electroweak radiative corrections at the one loop level and results for W physics at LEP-200, *Fortschr. Phys.* **41**, 307 (1993), arXiv:0709.1075 [hep-ph].

Bibliography VI

- T. Hahn and M. Perez-Victoria, Automatized one-loop calculations in four and D dimensions, Comput. Phys. Commun. 118, 153 (1999), arXiv:hep-ph/9807565.
- L. Harland-Lang, A. Martin, P. Motylinski and R. Thorne, Parton distributions in the LHC era: MMHT 2014 PDFs, *Eur.Phys.J.* C75, 204 (2015), arXiv:1412.3989 [hep-ph].
- N. Kidonakis, NNNLO soft-gluon corrections for the top-antitop pair production cross section, *Phys. Rev.* D90, 014006 (2014), arXiv:1405.7046 [hep-ph].
- D. B. Clark, E. Godat and F. I. Olness, ManeParse : A Mathematica reader for Parton Distribution Functions, *Comput. Phys. Commun.* 216, 126 (2017), arXiv:1605.08012 [hep-ph].

Bibliography VII

A. V. Povarov and A. D. Smirnov, Asymptotic behavior of amplitudes for longitudinal-leptoquark processes and structure of the scalar sector in the minimal model involving four-color symmetry, *Phys. At. Nucl.* 64, 74 (2001), [Yad. Fiz. 64, 78 (2001)].