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• For many decades only hadron states with quantum numbers of the q̄q and qqq systems have
been observed, although one can construct many other color singlets.

Why not q̄qqqq or q̄qq̄q? [Large-Nc QCD no such states at the leading 1/Nc]

In fact we know many multiquark states (deuteron, nuclei) but these are of a bit different nature.

• First attempt — the strange narrow pentaquark θ+(1540) predicted in 1997 and “temporarily”
observed in several experiments with large significance — was finally unsuccessful.

• In the 21th century many exotic candidates have been reported in the experiments:
New charmonium states which do not fall in the usual c̄c picture, e.g.:
Z+(4430) JP = 1+ seen in B+ → K(ψ′π+) with Γ ∼ 40+18+30

−13−13 MeV c̄cd̄u

Z+(3900) JP = 1+ seen in Υ(4260)→ π−(J/ψπ+) with Γ ∼ 30 MeV c̄cd̄u

Similar charged states b̄b states Zb(10610) and Zb(10650).

Also many neutral states c̄cq̄q: e.g. X(3872) a JPC = 1++ resonance M = 3871.69 ± 0.17 MeV
observed in B+ → K+(J/ψπ+π−) with the width Γ < 1.2 MeV very close to D0D̄∗0 threshold
MD0 + MD∗0 − MX = 0.11+0.6+0.1

−0.4−0.3 MeV.
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Recently, also pentaquark candidates from LHCb in Λ0
b → K−(J/ψp)

Pc(4380) (Γ ∼ 200 MeV)
Pc(4450) (Γ ∼ 30 MeV)

LHCb, PRL(2015)
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The only flavour-exotic candidate is X(5568)
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What are these structures — many scenarios.
Are they real resonances or just structures in the cross-section (anomalous thresholds, cusps etc)?
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Nonresonant nature of observed distributions
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Amplitudes involving hadron rescatterings (triangle diagrams + two-point functions)
may lead to the resonance structures in the distributions similar to the observed ones
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Phenomenological approaches to exotic states

Exotic hadrons as quark- diquark confined bound states

Naive constituent-quark model:
Constituent quarks [mq = 250 MeV (q = u, d), ms = 350 MeV]
interacting via potential (confining at large distances + OGE at short distances)
are building blocks of ordinary hadrons: quark-antiquark mesons and three-quark baryons.

Color-triplet–antitriplet interation via multigluon exchanges is confining at large distances

Concept of DIQUARKS: color-antitriplet D̄a = ϵabcqbqc made of two quarks.

Ordinary mesons: q̄aqa (q̄q)
Ordinary baryons: ϵabcqaqbqc = D̄aqa (qqq)
Tetraquarks: D̄aDa (q̄qq̄q)
Pentaquarks: ϵabcD̄aD̄bq̄c (q̄qqqq)

•Why not ϵabcD̄aD̄bD̄c (confined 6-quark state)?
• Hierarchy of sizes: diquarks are not really compact objects, size similar to meson size
• Not easy to obtain narrow exotic states
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Exotic hadrons as molecular bound states

meson-meson long-distance interactions may produce a bound state (similar to the deuteron).
Mass below threshold; if relatively wide, may see the tail.
• How to obtain from QCD the potential?

How to systematically understand exotic states in QCD?
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Lattice QCD

• Put QCD on the lattice in a box (discrete spectrum of bound states)
• Consider two-point functions of a set of interpolating currents ⟨T J(x) j(0)⟩ in Eucledian space
• Identify those discrete states which yield meson-meson continuum states in the continuum limit
• By modifying the operator set identify the discrete continuum state and determine its properties

Example of lattice study of X(3872 [Prelovsek et al, 2015: c̄c, meson-meson, four-quark operators]
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“A lattice candidate for X(3872) with I = 0 is observed very close to the experimental state only
if both c̄c and D̄D interpolators are included; the candidate is not found if diquark-antidiquark
and D̄D are used in the absence of c̄c. No candidate for neutral or charged X(3872), or any other
exotic candidates are found in the I = 1 channel. We also do not find signatures of exotic c̄cs̄s
candidates below 4.2 GeV”. No convincing signatures of tetraquark bound states.
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QCD at large Nc

S U(Nc) gauge theory with Nc → ∞ and αs ∼ 1/Nc. At leading order, QCD Green functions have
only non-interacting mesons as intermediate states; tetraquark bound states may emerge only
in Nc-subleading diagrams. This fact was believed to provide the theoretical explanation of the
non-existence of exotic tetraquarks.

However, even if the exotic tetraquark bound states appear only in subleading diagrams, the
crucial question is their width: if narrow, they might be well observed in nature.

[W.Lucha, D.M., H.Sazdjian, 1706.06003]

We discuss four-point Green functions of bilinear quark currents, depend on 6 variables p2
1, p2

2,
p′21 , p′22 , p = p1 + p2 = p′1 + p′2, and the two Mandelstam variables s = p2 and t = (p1 − p′1)2.

Criteria for selecting diagrams which potentially contribute to the tetraquark pole at s = M2
T :

1. The diagram should have a nontrivial (i.e., non-polynomial) dependence on the variable s.

2. The diagram should have a four-particle cut (i.e. threshold at s = (m1+m2+m3+m4)2), where
mi are the masses of the quarks forming the tetraquark bound state. The presence or absence
of this cut is established by solving the Landau equations for the corresponding diagram.
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Flavour-exotic tetraquarks

Bilinear quark currents ji j = q̄iq j producing Mi j from the vacuum, ⟨0| ji j|Mi j⟩ = fMi j, fM ∼
√

Nc.

“Direct” 4-point functions Γ(dir)
I = ⟨ j†12 j†34 j12 j34⟩ and Γ(dir)

II = ⟨ j†14 j†32 j14 j32⟩:
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“Recombination” functions Γ(rec) = ⟨ j†12 j†34 j14 j32⟩ and Γ(rec)†:
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Γ
(dir)
I,T = ⟨ j

†
12 j†34 j12 j34⟩ = O(N0

c ), Γ
(dir)
II,T = ⟨ j

†
14 j†32 j14 j32⟩ = O(N0

c ), Γ
(rec)
T = ⟨ j†12 j†34 j14 j32⟩ = O(N−1

c ).

The fact that “dir” and “rec” amplitudes have different behaviors in Nc requires at least two exotic
poles:
TA couples stronger to M12M34 channel, TB couples stronger to M14M32 channel.

Γ
(dir)
I,T = O(N0

c ) = f 4
M

 |A(M12M34 → TA)|2
p2 − M2

TA

+
|A(M12M34 → TB)|2

p2 − M2
TB

 + · · · ,
Γ

(dir)
II,T = O(N0

c ) = f 4
M

 |A(M14M32 → TA)|2
p2 − M2

TA

+
|A(M14M32 → TB)|2

p2 − M2
TB

 + · · · ,
Γ

(rec)
T = O(N−1

c ) = f 4
M

A(M12M34 → TA)A(TA → M14M32)
p2 − M2

TA

+
A(M12M34 → TB)A(TB → M14M32)

p2 − M2
TB

 + · · · .
We seek tetraquarks with finite mass at large Nc:

A(TA → M12M34) = O(N−1
c ), A(TA → M14M32) = O(N−2

c ),
A(TB → M12M34) = O(N−2

c ), A(TB → M14M32) = O(N−1
c ).

The widths Γ(TA,B) = O(N−2
c ).



13

Mixing between TA and TB:
Introducing mixing parameter gAB, we get additional contributions to the Green functions. Most
restrictive for gAB is the recombination function, for which mixing provides the additional contri-
bution

Γ
(rec)
T = O(N−1

c ) = f 4
M

A(M12M34 → TA)
p2 − M2

TA

gAB
A(TB → M14M32)

p2 − M2
TB

 + · · · .
The mixing parameter gAB ≤ O(N−1

c ): the two flavor-exotic tetraquarks of the same flavor content
do not mix at large Nc.
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Cryptoexotic tetraquarks

Diagrams of new topologies emerge.

For direct functions Γ(dir)
(I,II),T , new diagrams do not change leading large-Nc behavior:
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The new diagram modifies the leading large-Nc behavior:

Γ
(dir)
I,T = ⟨ j

†
12 j†23 j12 j23⟩ = O(N0

c ), Γ
(dir)
II,T = ⟨ j

†
13 j†22 j13 j22⟩ = O(N0

c ), Γ
(rec)
T = ⟨ j†12 j†23 j13 j22⟩ = O(N0

c ).

“dir” and “rec” functions have the same behavior, and one exotic state T is enough:

A(T → M12M23) = O(N−1
c ), A(T → M13M22) = O(N−1

c ).

Its width is Γ(T ) = O(N−2
c ).

T can mix with the ordinary meson M13. The restriction on the mixing parameter gT M13:

Γ
(dir)
I,T = O(N0

c ) = f 4
M

A(M12M23 → T )
p2 − M2

T

gT M13

A(M13 → M12M23)
p2 − M2

M13

 + · · · .
A(M13 → M12M23) ∼ 1/

√
Nc, so gT M13 ≤ O(1/

√
Nc).

The analysis of Green functions in large-Nc QCD allows one
to restrict some properties of the possible exotic states.
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QCD sum rules for exotic states

• The basic object
T -product of a number of the interpolating currents j(x):

⟨Ω| j(0)|M⟩ = fM , 0.

(E.g. j(x) = q̄1(x)Oq2(x) for “normal” mesons, 4-quark currents for exotic mesons).

The simplest object—2-point function

Π(p2) = i
∫

d4x eipx
⟨
Ω
∣∣∣∣T ( j(x) j†(0)

)∣∣∣∣Ω⟩
Perturbative expansion of the two-point function of 2 bilinear currents:

+ +

Perturbation theory works with Feynman propagators, whereas in the soft region due to the con-
finement the exact non-perturbative propagators differ strongly from Feynman propagators. This
should be “corrected.”
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Regions of soft momenta in Feynman integrals lead to power-suppressed terms in correlators.∫
dk

1
k2

1
(p − k)2 , k ∼ Λ→ Λ

2

p2

Thus, confinement effects should lead to power-suppressed terms in p2.

•Wilsonian OPE - separation of distances:

T
(

j(x) j†(0)
)
= C0(x2, µ)1̂ +

∑
n

Cn(x2, µ) : Ôn(x = 0, µ) :

Π(p2) = Πpert(p2, µ) +
∑

n

Cn

(p2)n⟨Ω| : Ôn(x = 0, µ) : |Ω⟩

• Physical QCD vacuum |Ω⟩ is complicated and differs from perturbative QCD vacuum |0⟩.
Condensates – nonzero expectation values of gauge-invariant operators over physical vacuum:

⟨Ω| : Ô(0, µ) : |Ω⟩ , 0

⟨Ω|q̄q(2 GeV|Ω⟩ = (271 ± 3 MeV)3, ⟨Ω|αs/πGG|Ω⟩ = 0.012 ± 0.006 GeV.
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2-point function is analytic function of p2

Π(p2) =
∫

ds
s − p2ρ(s),

One calculates the spectral densities using OPE and using hadron states

ρtheor(s) =

ρpert(s, µ) +
∑

n

Cnδ
(n)(s)⟨Ω|On(µ)|Ω⟩

 , ρhadr(s) = f 2δ(s − M2) + ρcont(s)

*

+
x x

m2
b M2

BB

Im    (s)Π

s

theoretical
physical

2(M  +m  )π



19

How to relate to each other truncated ΠOPE(p2) and Πhadron(p2) ?
Borel transform p2 → τ [ 1

s−p2 → exp(−τp2)]

Π(τ) =
∫

ds exp(−sτ)ρ(s) = f 2e−M2
Bτ +

∞∫
sphys

ds e−sτρhadr(s) =

∞∫
(mb+m)2

ds e−sτρpert(s, µ) + Πpower(τ, µ).

Here sphys is the physical threshold, and f is the decay constant defined by

⟨0|q̄Ob|B⟩ = f .

To get rid of the excited-state contributions, one adopts the duality Ansatz: all contributions of
excited states are counterbalanced by the perturbative contribution above an effective continuum
threshold, seff(τ) which differs from the physical continuum threshold.
Applying the duality assumption for the bilinear quark currents yields:

f 2e−M2
Bτ =

seff(τ)∫
(mb+m)2

ds e−sτρpert(s, µ) + Πpower(τ, µ).
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Strong decays from 3- point vertex functions

• The basic object:

Γ(p, p′, q) =
∫
⟨Ω|T (J(x) j(0) j′(x′)|Ω⟩ exp(ipx − ip′ x′)dxdx′

´

q

p p

This correlator contains the triple-pole in the Minkowski region: namely

Γ(p, p′, q) =
f f ′

(p2 − M2)(p′2 − M′2)
F(q2) + · · ·

where the form factor F(q2) contains pole at q2 = M2
q:

F(q2) =
fqgMM′Mq

(q2 − M2
q)
+ · · ·

gMM′Mq describes the M → M1M2 strong transition;
f , f ′, and fMq are the decay constants of the mesons ⟨0| j(0)|M⟩ = fM.



21

The three-point function satisfies the double spectral representation

Γ(p, p′, q) =
∫

ds
s − p2

ds′

s′ − p‘2∆(s, s′, q2)

Perform double Borel transform p2 → τ, p′2 → τ′ and applying duality we obtain

exp(−M2τ) exp(−M′2τ′) f f ′F(q2) =

seff∫
ds exp(−sτ)

s′eff∫
ds′ exp(−s′τ′)∆OPE(s, s′, q2)

• Normal hadrons:

ΓOPE(p2, p′2, q2) = Γ0(p2, p′2, q2) + αsΓ1(p2, p′2, q2) + . . .

p p
′

q

+ . .

.

+ . .

.

+. . .

Already one-loop zero-order diagram has a nonzero double-spectral density. And therefore pro-
vides a nonzero contribution to the form factor at small and intermediate momentum transfers
(and to the coupling). Radiative corrections and are crucial for large q2 and improve the result.
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• Exotic hadrons: ⟨T (θ(x) j1(0) j2(y))⟩.
Many possibilities to write interpolating current for X, ⟨0|θ|X⟩ = fX, fX , 0.

θ = M(x)M(x), M(x) = q̄(x)Oq̄(x)
θ = MA(x)MA(x), MA(x) = q̄(x)λAOq̄(x) [A = 1 . . . , 8]
θ = D̄a(x)Da(x), Da(x) = ϵabc(qc(x))TCOqb(x), [a, b, c = 1, . . . , 3]

Color Singlet - color singlet:

´

p

ṕ

p

ṕ

p

q qq

p

ΓOPE(p2, p′2, q2) = Π(p′2)Π(q2) + (αs)2Γconnected(p2, p′2, q2)

After the Borel transform p2 → τ, the disconnected leading-order contribution vanishes.

Thus the LO contribution is not related to the exotic-state decay.
Clear from the factorization property Γ(p, p′, q) = Π(p′2)Π(q2)

and from the large-Nc behaviour of the QCD diagrams.

The “fall-apart” decay mechanism of exotic hadrons differs from the decay mechanism of the ordinary
hadrons and requires the appropriate treatment within QCD sum rules. The calculation of the radiative
corrections is mandatory for a reliable analysis of the properties of the exotic states.
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Do power corrections contribute to the decay rate?

[from M.Nielsen, arXiv:1611.03300]
Power corrections are given in terms of the local condensates, i.e. there is no momentum flow from
one part of the diagram to the other. Therefore again factorizes in the function of F(q2)F(p′2) and
vanishes after the Borel transform in p2.
No contibution of the gluon condensate at leading order in αs to the X → M1M2 amplitude.
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2- point function of exotic currents

Singlet-singlet:

p p pp pp

How to write down the duality relation?

f 2
X exp(−M2

Xτ) + Πcont
meson−meson(τ) =

∫
ds exp(−sτ)ρXX(s) + Πpower(τ)

The right prescription:

Do not include the LO (i.e. start with order O(α2
s) in the singlet-singlet case: f (1)

X ∼ O(αs).
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Outlook

• Around 20 candidates for exotic resonances: c̄cq̄q or b̄bq̄q + c̄cqqq.
X(5568) in Bsπ

± (?) is doubtful. No light-quark candidates q̄qq̄q. No convincing interpretation.
Various possibilities.

• Non-resonance explanations:
the observed structures are due to hadron low-energy diagrams (triangles and loops). The ampli-
tudes contains many unknown couplings. Difficult to obtain a certain conclusion.

• Phenomenological models:
Based on diquarks in a confining potential predict spectrum of exotic states
Based on hadron-hadron potentials predict molecular states (depending on specific potentials)

• Lattice QCD:
Very difficult setup; no convincing results for exotic states

• QCD at large Nc:
Two exotic q̄1q2q̄3q4 narrow states Γ ∼ O(1/N2

c ), each decaying into one meson-meson channel.
One cryptoexotic state q̄1q2q̄2q3 Γ ∼ O(1/N2

c ) decaying into various meson-meson channels with
similar probabilities.

• QCD sum rules
Dozens of papers, many confirming the resonance interpretation of exotic states. However, not all
conceptual issues of the method for exotic states have been fully settled.
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• Dynamics of fall-apart decays of exotic resonances has fundamental difference from dynamics
of ordinary-meson decays: the appropriate contributions to Green functions describing decays of
exotic states emerge only at subleading αs orders; the leading order disconnected diagrams are not
related to strong decays of exotic hadrons. This makes the calculation of αs-corrections mandatory.
Many efforts for otaining reliable predictions are necessary!


