Overview of the 1958 Standard Model Measurements with the ATLAS Detector QFTHEP'17 Yaroslavl, Russia

YANWEN LIU UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA ON BEHALF OF THE ATLAS COLLABORATION QFTHEP'17 Yaroslavl, Russia

Outline

Measurements of the fundamental SM parameters

- $\blacktriangleright m_W, \sin \theta_W, \alpha_s$
- Production cross sections
 - QCD (jets and photons)
 - Inclusive jet production at 8 TeV
 - Inclusive photon and di-photon
 - ► 4-jet differential
 - Electroweak: multi-bosons
 - W/Z physics
 - ► Diboson(WW, WZ, ZZ, VBS $Z\gamma$)
 - ► Triboson (WWW, $WV\gamma$)

Data samples

Part I: determination of m_W , $\sin \theta_W$, α_s

ariXiv:1701.07240

5

Measurement of W mass at ATLAS

• m_W created by EWSB

 Sensitive to high order corrections from top and Higgs

$$m_W^2 \left(1 - \frac{m_W^2}{m_Z^2} \right) = \frac{\pi \alpha}{\sqrt{2}G_\mu} (1 + \Delta r)$$

$$\Delta r = \Delta \alpha - \tan \theta_W \Delta \rho(m_{top}) + \Delta r_{rem}^{SM}(m_{top}, m_H) + \dots$$

Precise measurement of $m_W \rightarrow$ test the consistency of the SM

arXiv:1407.3792

	Measurement	SM Prediction (*)
т _н	125.09 ± 0.24	102.8 ± 26.3
m _{top}	172.84 ± 0.70	176.6 ± 2.5
m _w	80.385 ± 0.015	80.360 ± 0.008
		(*) arXiv:1608.01509

 m_W can give strongest constraints

Global fit (2014)

New measurement

- 2011 data (7 TeV 4.6 fb⁻¹)
- Electron channel: 7.8 M events

- Muon channel: 5.9 M events
- \blacktriangleright Fit to p_T^l , m_T to obtain the m_W

θ_W and AFB

JHEP09(2015)049

- Charge forward-backward symmetry $q\overline{q} \rightarrow Z/\gamma^* \rightarrow l^+l^-$ events can be used to extract θ_W
- Fitting measured AFB with MC templates with varied $\sin \theta_W$
- Use ATLAS-epWZ12 LO PDF
- PDF uncertainty dominates

Measurement of α_s from TEEC

- Transverse Energy-Energy Correlation (TEEC) and its asymmetry (ATEEC) sensitive to α_s (infrared safe).
- Defined as E_T reweighted opening angles

Q

Determination of α_s

Part II: QCD (Jets and photons)

STDM-2015-01

12

Inclusive jet cross sections at 8 TeV

- Test of QCD(strong coupling, PDF...)
- Directly probe physics at the shortest distance accessible

NLOJet++

p_{T,jet} [GeV]

Inclusive photon production

Important test ground for pQCD and MC tools

> Parton radiation, fragmentation, resummation of threshold logs

arXiv:1701.06882

13

13 TeV, 3.2 fb⁻¹

	Phase-space region			
Requirement on $E_{\rm T}^{\gamma}$	$E_{\rm T}^{\gamma} > 125 { m GeV}$			
Isolation requirement	$E_{\rm T}^{\rm iso} < 4.8 + 4.2 \cdot 10^{-3} \cdot E_{\rm T}^{\gamma} [{\rm GeV}]$			
Requirement on $ \eta^{\gamma} $	$ \eta^{\gamma} < 0.6$	$0.6 < \eta^{\gamma} < 1.37$	$1.56 < \eta^{\gamma} < 1.81$	$1.81 < \eta^{\gamma} < 2.37$
Number of events	356 604	480 466	140 955	275 483

Comparison with theory

arXiv:1704.03839

Production of photon pairs

15

Important test of pQCD

- Important background for $H \rightarrow \gamma \gamma$
- ► $E_{T1} > 40 \text{ GeV}, E_{T2} > 30 \text{ GeV}, \Delta R > 0.4$

JHEP12(2015)105

4-jet differential cross section

- Unfolded distributions compared with predictions
- Generally good agreements, except PT(4)

K_T splitting scales

- Complementary point of view on jets
- (Track-) Jet production rates on different resolution scales
- Use $Z/\gamma^* \rightarrow l^+l^-$ to select the events

Quick review on K_T algorithm:

$$d_{ij} = \min\left(p_{\mathrm{T},i}^2, p_{\mathrm{T},j}^2\right) \times \frac{\Delta R_{ij}^2}{R^2}$$
$$d_{ib} = p_{\mathrm{T},i}^2$$
$$d_k = \min_{i,j}(d_{ij}, d_{ib})$$

merge (i₀,j₀) if d_{i0j0} is minimum, k : number of momenta left in the input list

arXiv:1704.01530

Results

 $\sqrt{s} = 8 \text{ TeV}, 20.2 \text{ fb}^{-1}$

10

 $\rightarrow e^+e^-$, R = 0.4

dVd₁ d√d₁

Prediction Data

10⁸

10⁷

10⁶

10⁵

10⁴

10³

10²

10

10⁻¹

1.4

1.2

0.8

Detector level : d1 Purity : ~99%

Unfolded to charged-particle level No generators can fully describe the data

Part III: Electroweak

 $\overline{\Delta}$ pp $\rightarrow W$ ∇ pp $\rightarrow Z/\gamma^*$ 7 TeV. 4.6 fb⁻¹, arXiv:1612.03016 (for Z/W) 8 TeV, 20.2 fb⁻¹, JHEP 02, 117 (2017) (for Z) 13 TeV, 81 pb⁻¹, PLB 759 (2016) 601 (for W) 13 TeV, 3.2 fb⁻¹, JHEP 02, 117 (2017) (for Z) 7 TeV, 4.6 fb⁻¹, Eur. Phys. J. C 74:3109 (2014)

8 TeV, 20.3 fb⁻¹, Eur. Phys. J. C 74:3109 (2014) 13 TeV. 3.2 fb⁻¹, arXiv:1606.02699

7 TeV, 4.6 fb⁻¹, PRD 90, 112006 (2014) 8 TeV. 20.3 fb⁻¹, arXiv:1702.02859 13 TeV, 3.2 fb⁻¹, arXiv:1609.03920

7 TeV, 4.5 fb⁻¹, Eur. Phys. J. C76 (2016) 6 8 TeV, 20.3 fb⁻¹, Eur. Phys. J. C76 (2016) 6 13 TeV, 13.3 fb⁻¹, ATLAS-CONF-2016-081

7 TeV, 4.6 fb⁻¹, PRD 87, 112001 (2013) 8 TeV, 20.3 fb⁻¹, JHEP 09 029 (2016) 13 TeV, 3.2 fb⁻¹, arXiv:1702.04519

7 TeV, 4.6 fb⁻¹, Eur. Phys. J. C (2012) 72:2173 8 TeV, 20.3 fb⁻¹, PRD 93, 092004 (2016) 13 TeV, 3.2 fb⁻¹, Phys. Lett. B 762 (2016)

7 TeV, 4.6 fb⁻¹, JHEP 03, 128 (2013) 8 TeV. 20.3 fb⁻¹, JHEP 01, 099 (2017) 13 TeV, 3.2 fb⁻¹, PRL 116, 101801 (2016)

Picture from ATLAS SM <u>Summary</u>

W/Z cross sections

- Standard Candles of the hadron colliders
- Can study EWK physics as well as QCD effects

Eur. Phys. J. C 77 (2017) 367

Test of electron/muon universality

Constraining the PDF

More strangeness at low x

$$r_s = \frac{s + \bar{s}}{2\bar{d}} = 1.19 \pm 0.07 \,(\exp)$$

$$\pm 0.02 \,(\text{mod}) \,{}^{+0.02}_{-0.10} \,(\text{par})$$

Constrain | Vcs | with W

► Allow | Vcs | to vary freely in the PDF fit

STDM-2016-09

VBS Z production

- Standard candle to calib. VBS tag
- Sensitive to aGC

LHC electroweak Xjj production measurements **ATLAS** Preliminary

WW production

- Sensitive to gauge boson interactions and QCD
- Important background for BSM
- Measurement with 3.2fb⁻¹, $e\mu$ final state, in fiducial region

Fiducial selection requirement			Cut value	
p_{T}^{ℓ}			> 25 GeV	
$ \eta_\ell $			< 2.5	
men			> 10 GeV	
Number of jets with $p_T > 25(30)$ GeV, $ \eta < 2.5(4.5)$			0	
$E_{\mathrm{T-Rel}}^{\mathrm{miss}}$			> 15 GeV	
$E_{\mathrm{T}}^{\mathrm{miss}}$			> 20 GeV	dia di
				6.1
$pp \rightarrow WW$ sub-process	Order of	$\sigma_{WW}^{\rm tot}$		$\sigma^{na}_{WW \to e\mu}$
	$\alpha_{\rm s}$	[pb]	[%]	[fb]
$q\bar{q}$	$O(\alpha_s^2)$	111.1 ± 2.8	16.20±0.13	422 + 12 - 11
gg (non-resonant)	$O(\alpha_s^3)$	$6.82 \begin{array}{c} + & 0.42 \\ - & 0.55 \end{array}$	28.1 + 2.7 - 2.3	44.9±7.2
$gg \to H \to WW$	$O(\alpha_s^5)$ tot. / $O(\alpha_s^3)$ fid.	$10.45 \stackrel{+}{_{-}} \stackrel{0.61}{_{-}} \stackrel{0.79}{_{-}}$	4.5 ± 0.6	11.0 ± 2.1
$q\bar{q} + gg \text{ (non-resonant)} + gg \rightarrow H \rightarrow WW$	nNNLO+H	128.4 + 3.5 - 3.8	$15.87^{+0.17}_{-0.14}$	478 ±17

<u>13 TeV arXiv: 1702.04519</u>

8 TeV: JHEP09(2016)029

29

Ratio of 13/8 TeV

 $\frac{\sigma_{13 \text{ TeV},WW \to e\mu}^{\text{fid}}}{\sigma_{8 \text{ TeV},WW \to e\mu}^{\text{fid}}} = 1.41 \pm 0.06 \text{ (stat.)} \pm 0.16 \text{ (syst.)} \pm 0.04 \text{(lumi.)}$

arXiv:1706.01702

30

WV(V=W,Z) semi-leptonic decay

- V->qq' reconstructed in resolved (jj) or merged/large-R (J) jets
- Compared to leptonic decay:
 - ► Large background ⊗
 - ▶ ~6X higher in BF 😊
 - ► No neutrino for W☺

Top control region : one b-tagged jet and dR(j,J) > 1.0

Signal regions

31

4.5 sigma

1.3 sigma

Limits on aGC

32

Expected

- Observed

WW

10

 C_w/Λ^2 [TeV⁻²]

20

leptonic

Phys. Lett. B 762 (2016) 1

WZ cross section at 13 TeV

33

 $\frac{\sigma_{W^{\pm}Z}^{\text{fid.,13 TeV}}}{\sigma_{W^{\pm}Z}^{\text{fid.,8 TeV}}} = 1.80 \pm 0.10 \,(\text{stat.}) \pm 0.08 \,(\text{sys.}) \pm 0.06 \,(\text{lumi.})$ POWHEG-PYTHIA: 1.78+-0.03

Jet multi. and NNLO cross section

 Scale to full phase space: 50.6±2.6(stat) ±2.0(sys) ±0.9(th) ±1.2(lumi) pb
 MATRIX (NNLO) prediction: 48.2^{+1.1}_{-1.0} pb

 Sherpa provides a good description of the jet multiplicity

ZZ production at 13 TeV

- Test EWK at highest energies
- Cross section doubled from 8 to 13 TeV
- Important background for Higgs and BSM

<u>Phys. Rev. Lett. 116, 101801 (2016)</u> ATLAS-CONF-2017-031

Jet multiplicity in ZZ events

SHERPA ~ OK POWHEG+PYTHIA off at ≥ 3

Limits on anomalous couplings

arXiv:1705.01966v1

VBS $Z\gamma$

Test gauge boson interactions

Event selected with MII > 40 GeV, MII γ > 182 GeV, Mjj>500 GeV

Process	Contribution (events)
Zγjj EWK	11
$Z\gamma$ jj QCD	37
Z+jets	9
Other	5.8

$$\sigma_{Z\gamma jj}^{\text{EWK}} = 1.1 \pm 0.6 \text{ fb}$$

Significance: 2 sigma

Eur. Phys. J. C (2017) 77: 141

WWW production

Signal significance : 1 sigma Constraints on aQGC

$$\mathcal{L}_{S,0} = \frac{f_{S,0}}{\Lambda^4} [(D_\mu \Phi)^{\dagger} D_\nu \Phi] \times [(D^\mu \Phi)^{\dagger} D^\nu \Phi]$$
$$\mathcal{L}_{S,1} = \frac{f_{S,1}}{\Lambda^4} [(D_\mu \Phi)^{\dagger} D^\mu \Phi] \times [(D_\nu \Phi)^{\dagger} D^\nu \Phi]$$

0.8

STDM-2016-05

			······································	[[fb ⁻¹]	
р	$\sigma = 96.07 \pm 0.13 \pm 0.91$ mb (data) COMPETE HPR1R2 (theory) $\sigma = 95.35 \pm 0.38 \pm 1.3$ mb (data)				50×10 ⁻⁶	PLB 761 (2016) 158
	$\sigma = 99.35 \pm 0.50 \text{ MPETE HPR1R2 (theory)}$ $\sigma = 190.1 \pm 0.2 \pm 6.4 \text{ pb (data)}$				8×10-°	PL B 759 (2016) 601
V	$\sigma = 190.1100.1+0.0140$ DYNNLO + CT14NNLO (theory) $\sigma = 98.71 \pm 0.028 \pm 2.191$ nb (data)				1.6	arXiv:1612.03016 [bep-ex]
	$\frac{1}{\sigma} = 58.43 \pm 0.03 \pm 1.66 \text{ pb} (data)$				4.0	JHEP 02 (2017) 117
Ζ	DYNNLO+CT14 NNLÓ (theory) $\sigma = 34.24 \pm 0.03 \pm 0.92$ nb (data)				20.2	JHEP 02 (2017) 117
	DYNNLO+CT14 NNLÓ (theory) $\sigma = 29.53 \pm 0.03 \pm 0.77$ nb (data)				4.6	JHEP 02 (2017) 117
	DYNNLO+CT14 NNLÓ (theory) $\sigma = 818 \pm 8 \pm 35 \text{ pb} (\text{data})$	Ц	.		3.2	PLB 761 (2016) 136
Ŧ	top++ NNLO+NLL (theory) $\sigma = 242.9 \pm 1.7 \pm 8.6 \text{ pb} (data)$	λ Τ		I J I	20.2	EPJC 74: 3109 (2014)
L	top++ NNLO+NNLL (theory) $\sigma = 182.9 \pm 3.1 \pm 6.4$ pb (data)	<u>с</u> т			4.6	EPJC 74: 3109 (2014)
	top++ NNLO+NNLL (theory) $\sigma = 247 \pm 6 \pm 46 \text{ pb} (data)$				3.2	arXiv:1609.03920 [hep-ex]
han	NLO+NLL (theory) $\sigma = 89.6 \pm 1.7 + 7.2 - 6.4 \text{ pb (data)}$	× 4			20.3	arXiv:1702.02859 [hep-ex]
nan	NLO+NLL (theory) $\sigma = 68 \pm 2 \pm 8 \text{ pb} (\text{data})$, T			4.6	PRD 90, 112006 (2014)
	$\sigma = 142 \pm 5 \pm 13 \text{ pb} (\text{data})$	Ť			3.2	arXiv: 1702.04519 [hep-ex]
1/	NNLO (theory) $\sigma = 68.2 \pm 1.2 \pm 4.6 \text{ pb} (\text{data})$	× [–]	Theory		20.3	PLB 763, 114 (2016)
vv	NNLO (theory) $\sigma = 51.9 \pm 2 \pm 4.4 \text{ pb} (\text{data})$	A			4.6	PRD 87, 112001 (2013)
	NNLO (theory) $\sigma = 61.5 + 10.5 - 10 + 4.3 - 3.2 \text{ pb}$ (data)		LHC pp $\sqrt{s} = 7$ TeV		13.3	ATLAS-CONE-2016-081
_	LHC-HXSWG YR4 (theory) $\sigma = 27.7 \pm 3 + 2.3 - 1.9 \text{ pb} (\text{data})$	k ^r	Data		20.3	EPJC 76. 6 (2016)
1	LHC-HXSWG YR4 (theory) $\sigma = 22.1 + 6.7 - 5.3 + 3.3 - 2.7 \text{ pb} (data)$	b	stat		4.5	EPJC 76, 6 (2016)
	LHC-HXSWG YR4 (theory) $\sigma = 94 \pm 10 + 28 - 23 \text{ pb} (\text{data})$		$stat \oplus syst$		3.2	arXiv:1612.07231 [hep-ex]
/+	NLO+NNLL (theory) $\sigma = 23 \pm 1.3 + 3.4 - 3.7 \text{ pb (data)}$	_ ⊢	LHC pp \sqrt{s} = 8 TeV		20.3	JHEP 01, 064 (2016)
Ĺ	NLO+NLL (theory) $\sigma = 16.8 \pm 2.9 \pm 3.9 \text{ pb} (\text{data})$	b ^T	Data		2.0	PLB 716, 142-159 (2012)
	$\sigma = 50.6 \pm 2.6 \pm 2.5 \text{ pb (data)}$		stat		3.2	PLB 762 (2016) 1
7	MATRIX (NNLO) (theory) $\sigma = 24.3 \pm 0.6 \pm 0.9 \text{ pb} (\text{data})$	λ	stat ⊕ syst		20.3	PRD 93, 092004 (2016)
2	MATRIX (NNLO) (theory) $\sigma = 19 + 1.4 - 1.3 \pm 1$ pb (data)	^T	LHC pp \sqrt{s} = 13 TeV		4.6	EPJC 72, 2173 (2012)
	MATRIX (NNLÔ) (théory) $\sigma = 17.2 \pm 0.6 \pm 0.7 \text{ pb} \text{ (data)}$	Ť	Data		36.1	ATLAS-CONF-2017-031
7	Matrix (NNLO) & Sherpa (NLO) (theory) $\sigma = 7.3 \pm 0.4 + 0.4 - 0.3$ pb (data)	Δ	stat		20.3	JHEP 01, 099 (2017)
	NNLO (theory) $\sigma = 6.7 \pm 0.7 + 0.5 - 0.4 \text{ pb (data)}$	ō	stat ⊕ syst		4.6	JHEP 03, 128 (2013)
han	NNLO (theory) $\sigma = 4.8 \pm 0.8 \pm 1.6 \pm 1.3$ pb (data)	ATLAS	Preliminary		20.3	PLB 756, 228-246 (2016)
	$\sigma = 1.5 \pm 0.72 \pm 0.33 \text{ pb (data)}$				3.2	EPJC 77 (2017) 40
Ŵ	Madgraph5 + aMCNLO (theory) $\sigma = 369 + 86 - 79 \pm 44$ fb (data)	Bun 1 2	$\sqrt{5} = 7.8 + 13 \text{ TeV}$		20.3	JHEP 11, 172 (2015)
-	$\sigma = 0.92 \pm 0.29 \pm 0.1 \text{ pb (data)}$, run , z	$y_{3} = 7, 0, 10 100$		3.2	EPJC 77 (2017) 40
tΖ	Madgraph5 + aMCNLO (theory) $\sigma = 176 + 52 - 48 \pm 24$ fb (data) HELAC-NLO (theory)				20.3	JHEP 11, 172 (2015)
	$10^{-5} \ 10^{-4} \ 10^{-3} \ 10^{-2} \ 10^{-1} \ 1$	$10^1 \ 10^2 \ 10^3$	$10^4 \ 10^5 \ 10^6 \ 10^{11}$	0.5 1 1.5 2 2.5		
	10 10 10 10 10 1	10 10 10	10 10 10 10	2.3 1 1.0 2 2.0		

Consistencies in 12 orders of magnitudes!

41

<u>Picture from</u> <u>ATLAS SM</u> <u>Summary</u>

Picture from ATLAS SM Summary

Looking ahead

Conclusions

- SM spans 12 order of magnitudes in cross sections, no significant deviation seen
- On fundamental parameters in SM:
 - \triangleright m_W measured to a precision of 19 MeV, modeling systematics dominate
 - ▶ $\sin \theta_W$, α_s measured
- Jet inclusive cross sections consistent with prediction
- Inclusive photon and photon pair: N(N)LO predictions challenged, SHERPA OK
- Failure to model the kT splitting scales in Z+jets
- ▶ W/Z data → test of EWK (lepton universality), ATLAS-epWZ16 (more strange), Vcs
- Di-boson, VBS, triboson: No suprises, constraints on anomalous couplings

3000 fb⁻¹ ahead, stay tuned for discoveries!

BACK UP SLIDES START

Eur. Phys. J. C 76 (2016) 670

Measurement of $b\overline{b}$ dijet

- Test of pQCD
- Important background for Higgs and BSM physics
- Leading jet $P_T > 270 \text{ GeV}(\text{trigger})$

VBS ssWW

Significance: 3.6 sigma (VBS SR: ∆Rjj > 2.4)

arXiv:1611.02428

 θ_W and AFB

$$\bar{g}_V^f = \sqrt{\rho_f} \left(T_f^3 - 2Q_f \sin^2 \theta_{\text{eff}} \right)$$

• EWK leads to AFB in $q\overline{q} \rightarrow Z/\gamma^* \rightarrow l^+l^-$ events

$$\frac{\mathrm{d}\sigma}{\mathrm{d}(\cos\theta)} = \frac{4\pi\alpha^2}{3\hat{s}} \left[\frac{3}{8}A(1+\cos^2\theta) + B\cos\theta \right]$$

► In Collins-Soper Frame:

$$A_{\rm FB} = rac{\sigma_{
m F} - \sigma_{
m B}}{\sigma_{
m F} + \sigma_{
m B}}$$

At pp collider, direction of the quark not known: assume the direction of the boost of l^+l^- system

$$h_2$$
 h_1 h_2 z -axis

lepton plane

$$\cos \theta_{\rm CS}^* = \frac{p_{\rm z,\ell\ell}}{|p_{\rm z,\ell\ell}|} \frac{2(p_1^+ p_2^- - p_1^- p_2^+)}{m_{\ell\ell} \sqrt{m_{\ell\ell}^2 + p_{\rm T,\ell\ell}^2}}$$

$$p_i^{\pm} = \frac{1}{\sqrt{2}} (E_i \pm p_{\mathbf{z},i})$$

Measurement

- ► 4.7 pb⁻¹ of pp collisions at 7 TeV
- Electrons up to $|\eta| = 4.9$
- Muons up to $|\eta|=2.4$

CP conserving Operators

$$\mathcal{O}_{WWW} = \operatorname{Tr}[W_{\mu\nu}W^{\nu\rho}W^{\mu}_{\rho}]$$
$$\mathcal{O}_{W} = (D_{\mu}\Phi)^{\dagger}W^{\mu\nu}(D_{\nu}\Phi)$$
$$\mathcal{O}_{B} = (D_{\mu}\Phi)^{\dagger}B^{\mu\nu}(D_{\nu}\Phi)$$

 $L_{S,0} = \left| \left(D_{\mu} \Phi \right)^{\dagger} D_{\nu} \Phi \right| \times \left| \left(D_{\mu} \Phi \right)^{\dagger} D_{\nu} \Phi \right|$ $L_{S,1} = \left[\left(D_{\mu} \Phi \right)^{\dagger} D^{\mu} \Phi \right] \times \left[\left(D_{\nu} \Phi \right)^{\dagger} D_{\nu} \Phi \right]$ $L_{M,0} = Tr[\hat{W}_{\mu\nu}\hat{W}^{\mu\nu}] \times \left[\left(D_{\beta}\Phi \right)^{\dagger} D^{\beta}\Phi \right]$ $L_{M,1} = Tr[\hat{W}_{\mu\nu}\hat{W}^{\nu\beta}] \times \left[\left(D_{\beta}\Phi \right)^{\dagger} D^{\mu}\Phi \right]$ $L_{M,6} = \left[\left(D_{\mu} \Phi \right)^{\dagger} \hat{W}_{\beta\nu} \hat{W}^{\beta\nu} D^{\mu} \Phi \right]$ $L_{M,7} = \left[\left(D_{\mu} \Phi \right)^{\dagger} \hat{W}_{\beta\nu} \hat{W}^{\beta\mu} D^{\nu} \Phi \right]$ $L_{T,0} = Tr \left[W_{\mu\nu} W^{\mu\nu} \right] \times Tr \left[W_{\alpha\beta} W^{\alpha\beta} \right]$ $L_{T,1} = Tr \left[W_{\alpha\nu} W^{\mu\beta} \right] \times Tr \left[W_{\mu\beta} W^{\alpha\nu} \right]$ $L_{T,2} = Tr \left[W_{\alpha\mu} W^{\mu\beta} \right] \times Tr \left[W_{\beta\nu} W^{\nu\alpha} \right]$

Dim-8

Upgrades

