# Radiative decay of keV-mass sterile neutrinos in strongly magnetized plasma

#### Alexandra Dobrynina P. G. Demidov Yaroslavl State University, Russia

in collaboration with N. Mikheev and G. Raffelt

The XXIII International Workshop High Energy Physics and Quantum Field Theory

> June 26 – July 3, 2017 Yaroslavl, Russia

> > (日) (月) (三) (三) (三) (三) (○) (○)

# Introduction

- Critical Schwinger value  $B_e = m_e^2/e = 4.41 imes 10^{13}$  Gauss
- Magnetars (SGRs and AXPs)
  - [S. A. Olausen and V. M. Kaspi, Astrophys. J. Suppl. 212, 6 (2014)]
- Core-collapse supernova explosions
  - [A. Heger et al, ApJ 626, 350 (2005);
    G. S. Bisnovatyi-Kogan et al, Acta Polytech. Proc. 1, 181 (2014);
    H. Sawai and S. Yamada, Astrophys. J. 817, 153 (2016)]
- Accretion discs at merger of compact objects in close binary systems [M. V. Barkov and S. S. Komissarov, MNRAS 401, 1644 (2010);
   I. Zalamea and A. Beloborodov, MNRAS 410, 2302 (2011)]

#### Neutrino Sources



#### $\nu \rightarrow \nu + \gamma$ in active medium

In vacuum

P. Pal and L. Wolfenstein, Phys. Rev. D25, 766 (1982)

- In plasma
  - V. N. Tsytovich, Sov. Phys. JETP 18, 816 (1964);
  - V. N. Oraevsky et al., JETP Lett. 43, 709 (1986);
  - J. C. D'Olivo et al., Phys. Rev. Lett. 64, 1088 (1990);
  - C. Giunti et al., Phys. Rev. D43, 164 (1991);
  - R. Sawyer, Phys. Rev. D46, 1180 (1992);
  - J. C. D'Olivo et al., Phys. Lett. B365, 178 (1996);
  - S. Hardy and D. Melrose, Phys. Rev. D54, 6491 (1996)
- In magnetic field
  - D. V. Galtsov and N. S. Nikitina, Sov. Phys. JETP 35, 1047 (1972);
  - V. V. Skobelev, Sov. Phys. JETP 44, 660 (1976);
  - A. N. Ioannisian and G. G. Raffelt, Phys. Rev. D55, 7038 (1997);
  - A. A. Gvozdev et al., Phys. Rev. D54, 5674 (1996);
  - A. A. Gvozdev et al., Phys. Lett. B410, 211 (1997)
- In magnetized plasma
  - M. V. Chistyakov and N. V. Mikheev, Phys. Lett. B467, 232 (1999); A. I. Ternov and P. A. Eminov, Phys. Rev. D87, 113001 (2013);
  - A. A. Dobrynina et al., Phys. Rev. D90, 113015 (2014)

### Strongly magnetized plasma

- ullet Strongly magnetized plasma  $\Rightarrow$  electrons occupy the lowest Landau level
- Magnetic field is directed along the third axis  $ec{B}=(0,0,B)$
- Hierarchy of plasma parameters

$$2eB > \mu_e^2 - m_e^2 \gg T^2$$

 $m_e$  is the electron mass, e is the elementary charge,  $\mu_e$  is the electron chemical potential,  $\mathcal{T}$  is plasma temperature

 Strong magnetic field and degenerate plasma ⇒ photon becomes a particle with the effective mass Ω<sub>0</sub>
 [H. Pérez Rojas and A. E. Shabad, Ann. Phys. (1979), Ann. Phys. (1982)]

$$\Omega_0^2 = \frac{2\alpha}{\pi} eB \frac{p_F}{\sqrt{p_F^2 + m_e^2}}$$

lpha is the fine-structure constant,  $p_F$  is the electron Fermi momentum

# Plasma frequency

Electron number density in strong magnetic field

$$n_e = rac{eBp_F}{2\pi^2} \Rightarrow p_F = 2\pi^2 rac{n_e}{eB}$$

• Plasma frequency  $\Omega_0$  can be presented in the form

$$\Omega_0\simeq 37.1~{
m keV}\left[rac{n_{30}^2b^2}{b^2+1.3~n_{30}^2}
ight]^{1/4}$$

• 
$$b = B/B_e$$
,  $n_{30} = n_e / (10^{30} \text{cm}^{-3})$ 

• Critical Schwinger value of electron

$$B_e = rac{m_e^2}{e} = 4.41 imes 10^{13} \ {
m G}$$

- Benchmark number density  $n = 10^{30} {\rm ~cm^{-3}}$  corresponds to matter mass density  $ho \simeq 10^6 {\rm ~g/cm^3}$
- Degenerate electrons would still be nonrelativistic,  $V_F \ll 1$

#### Neutrino

 $\circ\,$  Standard neutrino with sub-eV masses  $m_
u \lesssim 1\,$  eV

 $\Omega_0 \gg m_{
u} \Rightarrow 
u_i \rightarrow 
u_i \gamma$  decay is kinematically forbidden

 Sterile neutrino with keV-mass m<sub>s</sub> [M. Drewes et al., arXiv:1602.04816]

Bound from cosmology

 $0.4 \text{ keV} < m_s < 50 \text{ keV}$ 

(日) (月) (三) (三) (三) (三) (○) (○)

[S. Tremaine and J. E. Gunn, Phys. Rev. Lett. (1979);
A. Boyarsky et al., Ann. Rev. Nucl. Part. Sci. (2009);
M. Laine and M. Shaposhnikov, JCAP (2008)]

# Mixing

- Sterile neutrino  $\nu_s$  can mix with active species  $\Rightarrow$  can interact with matter in this way
- Restriction: sterile neutrino is mixing with one active neutrino; similar to two-flavor scheme of active-neutrino mixing
- Neutrino mass states

$$\begin{split} |\nu_1\rangle &= \cos\theta_s |\nu_a\rangle - \sin\theta_s |\nu_s\rangle \\ |\nu_2\rangle &= \sin\theta_s |\nu_a\rangle + \cos\theta_s |\nu_s\rangle \end{split}$$

- One mixing angle  $heta_s$
- The mixing angle  $\theta_s$  is assumed to be very small; supported by experimental data

$$|
u_1
angle \simeq |
u_a
angle, \qquad |
u_2
angle \simeq |
u_s
angle$$

Upper limit on θ<sub>s</sub> from radiative decay ν<sub>s</sub> → ν<sub>a</sub>γ
 [A. Boyarsky et al., Ann. Rev. Nucl. Part. Sci. 59 (2009)]

$$heta_s^2 \lesssim 1.8 imes 10^{-5} \left(rac{1 ext{ keV}}{m_s}
ight)^{\frac{1}{2}}$$

・ロ・ (日・ (日・ (日・ 日) のへで

# Strongly magnetized plasma

• In plasma active neutrino can interact with photons via real electrons

$$\mathcal{L}_{ ext{eff}} = -rac{\mathcal{G}_{\textit{F}}}{\sqrt{2}} \left[ ar{\Psi}_{e} \, \gamma^{lpha} \left( \mathcal{C}_{V} + \mathcal{C}_{\textit{A}} \gamma_{\texttt{5}} 
ight) \Psi_{e} 
ight] j_{lpha}$$

Vector and axial-vector coefficients

$$C_V = \pm 1/2 + 2\sin^2\theta_W, \qquad C_A = \pm 1/2$$

 $\theta_W$  is the Weinberg angle (sin<sup>2</sup>  $\theta_W \simeq 0.23$ ); upper sign is for  $\nu_e$ , lower one is for  $\nu_\mu$  and  $\nu_\tau$ 

Neutrino current describes sterile-to-active neutrino transition

$$j_{lpha}=j^{(s
ightarrow a)}_{lpha}=\cos heta_{s}\sin heta_{s}\left[ar{
u}_{a}\gamma_{lpha}\left(1+\gamma_{5}
ight)
u_{s}
ight]$$

- We consider the active neutrino with fixed flavor electron neutrino
- Modifications in dispersion relations of both neutrino are very small  $\Rightarrow$  safely neglected

# Effective Lagrangian

• Effective Lagrangian of neutrino-electron interaction

$$\mathcal{L}_{\text{eff}} = -\frac{G_F}{\sqrt{2}} \left[ C_V \left( \bar{\Psi}_e \gamma^\alpha \Psi_e \right) j_\alpha + C_A \left( \bar{\Psi}_e \gamma^\alpha \gamma_5 \Psi_e \right) j_\alpha \right]$$

• Axial-vector electron current can be transformed into vector current

$$\bar{\Psi}_e \gamma_\alpha \gamma_5 \Psi_e \Rightarrow \bar{\Psi}_e (\tilde{\varphi}\gamma)_\alpha \Psi_e$$

• Dimensionless tensor of the external magnetic field and its dual

$$\varphi_{\alpha\beta} = \frac{F_{\alpha\beta}}{B}, \qquad \tilde{\varphi}_{\alpha\beta} = \frac{1}{2} \varepsilon_{\alpha\beta\rho\sigma} \varphi^{\rho\sigma}$$

Lagrangian becomes

$$\mathcal{L}_{\mathrm{eff}} = e\left(\bar{\Psi}_e \gamma^{lpha} \Psi_e\right) V_{lpha}$$

Local vector operator

$$V_{lpha} = -rac{{{{\cal G}_{{\sf F}}}}}{{e\sqrt 2 }}\left[ {{\cal C}_V \left( { ilde arphi } { ilde arphi } j 
ight)_lpha - {{\cal C}_{{\sf A}} \left( {{ ilde arphi } j} 
ight)_lpha } 
ight]$$

Formally coinsides with usual electromagnetic Lagrangian

$$\mathcal{L}_{\mathrm{EM}} = e \left( \bar{\Psi}_e \gamma^{lpha} \Psi_e \right) A_e$$

ション (日本) (日本) (日本) (日本)

# Amplitude of $\nu_s \rightarrow \nu_a + \gamma$ decay

• Feynman diagrams of  $\nu_s \rightarrow \nu_a + \gamma$  decay in strongly magnetized plasma are identical to the Compton scattering diagrams, after one of the photon lines is replaced by the local vector operator  $V_{\alpha}$ 





• Photon polarization operator  $\Pi_{\alpha\beta}$  in electron plasma is determinated by the amplitude of  $\gamma \rightarrow \gamma$  transition

$$M_{\gamma \to \gamma} = -\mathcal{E}^*_{\alpha} \, \Pi^{\alpha \beta} \, \mathcal{E}_{\beta}$$

Similar, sterile-neutrino decay amplitude

$$M_{\rm pl+f} = -\mathcal{E}^*_{\alpha} \Pi^{lpha eta} V_{eta}$$

# Photon polarization operator in strongly magnetized plasma

 In strongly magnetized plasma, there are only two photon physical states [M. V. Chistyakov and D. A. Rumyantsev, JETP 107, 533 (2008)]

$$\mathcal{E}^{(1)}_{lpha} pprox rac{(qarphi)_{lpha}}{\sqrt{q_{\perp}^2}}\,, \qquad \mathcal{E}^{(2)}_{lpha} pprox rac{(q ilde{arphi})_{lpha}}{\sqrt{q_{\parallel}^2}}$$

• Eigenvalues of polarization operator  ${\sf \Pi}_\lambda$   $(\lambda=1,2)$ 

$$\Pi_{\alpha\beta}\,\mathcal{E}_{\beta}^{(\lambda)}=\Pi_{\lambda}\,\mathcal{E}_{\alpha}^{(\lambda)}$$

• Eigenvalues  $\Pi_1$  and  $\Pi_2$  under kinematical condition  $\omega \lesssim m_s \ll m_e$ 

$$\Pi_1 \approx -\frac{2\alpha}{\pi} \, \frac{\omega V_F \mu_e \sqrt{q^2}}{\sqrt{q_{\parallel}^2}} \,, \quad \Pi_2 \approx \frac{2eB\alpha}{\pi} \, \frac{q_{\parallel}^2 V_F}{\omega^2 - V_F^2 k_3^2}$$

- $\omega$  is photon energy,  $k_3$  is photon momentum projection on field direction,  $V_F$  is the Fermi velocity of electron plasma
- Contribution of Π<sub>2</sub> in sterile-neutrino decay amplitude dominates

$$\left| \frac{\mathsf{\Pi_1}}{\mathsf{\Pi_2}} \right| \lesssim \frac{m_{\mathsf{s}}}{\mu_e} \ll 1$$

Photons of mode 2 are mainly produced in this decay

 $\nu_s \rightarrow \nu_a + \gamma$  decay width

Sterile-neutrino decay amplitude in strongly magnetized plasma

$$M_{\rm pl+f} = \frac{G_F \,\Omega_0^2}{e\sqrt{2}} \,\sqrt{q_{\parallel}^2} \,\frac{C_V \left(q\tilde{\varphi}j\right) + C_A \left(q\tilde{\varphi}\tilde{\varphi}j\right)}{\omega^2 - V_F^2 k_3^2}$$

• Rest frame of sterile neutrino is chosen:  $p_s^{\mu}=(m_s,ec{0})$ 

• Decay width of  $u_s 
ightarrow 
u_a + \gamma$  process

$$W_{\rm pl+f} = \frac{1}{32\pi^2 m_s} \int \frac{d^3 p_a}{E_a} \frac{d^3 k}{\omega} \delta^{(4)} (p_s - p_a - q) |M_{\rm pl+f}|^2$$

- Four-momenta of active neutrino p<sup>μ</sup><sub>a</sub> = (E<sub>a</sub>, p
  <sub>a</sub>) and photon q<sup>μ</sup> = (ω, k); neutrino assumed to be massless: E<sub>a</sub> = |p
  <sub>a</sub>|
- Non-trivial photon dispersion relation in strongly magnetized plasma  $[\Omega_0$  is photon "effective mass"]

$$q^2 = \Pi_2 \qquad \Rightarrow \qquad \omega^2 = k_3^2 + k_\perp^2 + \Omega_0^2 \frac{\omega^2 - k_3^2}{\omega^2 - V_F^2 k_3^2}$$

Analytical results are available in limiting cases only

### Unmagnetized electron plasma

Effective local Lagrangian

$$\mathcal{L}_{ ext{eff}} = -rac{\mathcal{G}_{\textit{F}}}{\sqrt{2}} \left[ \mathcal{C}_{\textit{V}} \left( ar{\Psi}_{e} \, \gamma^{lpha} \Psi_{e} 
ight) j^{(s 
ightarrow a)}_{lpha} + \mathcal{C}_{\textit{A}} \left( ar{\Psi}_{e} \, \gamma^{lpha} \gamma_{5} \Psi_{e} 
ight) j^{(s 
ightarrow a)}_{lpha} 
ight]$$

ullet Vector part of  $\mathcal{L}_{\mathrm{eff}}$  is similar to the standard electromagnetic Lagrangian

$$\mathcal{L}_{ ext{EM}}=e\left(ar{\Psi}_{e}\gamma_{lpha}\Psi_{e}
ight)\mathcal{A}^{lpha}$$

• Vector part of  $\nu_s \rightarrow \nu_a + \gamma$  decay amplitude  $M_{\rm pl} = M_{\rm pl}^V + M_{\rm pl}^A$ can be expessed through the photon polarization operator  $\Pi_{\alpha\beta}$ 

$$M_{\rm pl}^V = \frac{C_V \, G_F}{e\sqrt{2}} \, (j \Pi \varepsilon^*)$$

- Axial-vector contribution is much smaller in both nonrelativistic and relativistic electron plasma
- In nonrelativistic plasma, suppression by neutrino-to-electron mass ratio

$$rac{M_{
m pl}^A}{M_{
m pl}^V}\sim rac{C_A}{C_V}\,rac{m_s}{m_e}\ll 1$$

# Photon dispersion in unmagnetized plasma

• Plasma frequency in nonrelativistic plasma

$$\omega_0^2 = \frac{4\pi\alpha n_e}{m_e}$$

- For degenerate electrons  $n_e = p_F^3/3\pi^2$
- Photons in plasma have three polarization modes: one longitudinal  $\varepsilon_{\alpha}^{\ell}$  and two transverse  $\varepsilon_{\alpha}^{t}$ , where t = 1, 2
- In nonrelativistic plasma, PO eigenvalues are well known [G. Raffelt, Stars as Laboratories for Fundamental Physics (1996)]:

$$\Pi_t pprox \omega_0^2 \,, \qquad \Pi_\ell pprox \omega_0^2 \left(1 - rac{k^2}{\omega^2}
ight)$$

Modified photon dispersion relation can be obtained from equation

$$q^2 = \omega^2 - k^2 = \Pi_\lambda$$

Solutions for longitudinal and transverse modes, respectively

$$\omega\simeq\omega_0,\qquad \omega=\sqrt{\omega_0^2+k^2}$$

### Decay width in unmagnetized electron plasma

• Decay width of  $u_s 
ightarrow 
u_s + \gamma$  decay in nonrelativistic electron plasma

$$W_{\rm pl}^t = W_{
m vac} rac{16\pi^2}{9lpha^2} x_0^4 (1-x_0^2)^2$$

$$W_{\rm pl}^{\ell} = W_{\rm vac} \frac{32\pi^2}{9\alpha^2} x_0 (1-x_0)^2$$

- Scaled plasma frequency  $x_0 = \omega_0/m_s$
- Normalized to vacuum decay width

$$W_{\rm vac} = \frac{9\alpha G_F^2}{2048\pi^4} m_s^5 \sin^2(2\theta_s)$$

• For parameter values of interest, lifetime of sterile neutrino

$$au_{
m vac} = 1.2 imes 10^{26} \, {
m years} \left( rac{10 \, \, {
m keV}}{m_s} 
ight)^5 \left( rac{10^{-11}}{ heta_s^2} 
ight)$$

Age of the Universe

$$au_{\mathrm{U\,niv}} = 1.37 imes 10^{10}$$
 years

### Comparison of magnetized and unmagnetized plasma

Sterile-neutrino radiative decay rate for fixed mass values as a function of electron density  $n_{30} = n_e/(10^{30} \text{ cm}^{-3})$ 



Dashed lines: unmagnetized plasma. Solid lines: strongly magnetized plasma with  $B=B_e=4.41 imes10^{13}~{
m G}$ 

・ロ・ (局) (言) (言) 言 のへで

# Conclusions

- Radiative decay of sterile neutrino with mass of order of ten keV is studied in presence of both strongly magnetized and unmagnetized electron plasma
- Photon dispersion modified by electron plasma is taken into account in analysis of the sterile neutrino decay width
- Strong magnetic field suppresses the catalyzing influence of electron plasma on the sterile-neutrino decay rate

#### Nonrelativistic magnetized plasma

• For  $m_s = 2 - 20$  keV and  $B = 1 - 100 B_e$ , strongly magnetized electron plasma is nonrelativistic,  $V_F \ll 1$ 

$$\begin{split} \mathcal{W}_{\text{pl+f}}^{\text{n-rel}} &= \mathcal{W}_{\text{vac}} \, \frac{32 \, \pi^2}{2835 \, \alpha^2} \left( \mathcal{C}_V^2 + \mathcal{C}_A^2 \right) \left[ \theta(2x_0 - 1) \right. \\ & \times \left( -\frac{11}{x_0} + 129x_0 - 210x_0^2 + 168x_0^3 - 84x_0^4 - 24x_0^6 + 32x_0^8 \right) \\ & \left. + \theta(1 - 2x_0) \, 4x_0^4 \left( 21 + 6x_0^2 - 8x_0^4 \right) \right] \end{split}$$

- Dimensionless plasma frequency  $x_0 = \Omega_0/m_s$
- Normalized on the vacuum decay width

$$W_{\rm vac} = \frac{9\alpha G_F^2}{2048\pi^4} m_s^5 \sin^2(2\theta_s)$$

• At  $x_0 \ll 1$  and  $C_V = C_A = 1/2$ 

$$\frac{W_{\rm pl+f}^{\rm n-rel}}{W_{\rm vac}}\bigg|_{x_{\rm 0}\ll 1} = \frac{256}{135}\frac{\pi^2}{\alpha^2}x_{\rm 0}^4$$

ション (雪) (日) (日) (日) (日)

[A. I. Ternov and P. A. Eminov, Phys. Rev. D87 (2013)]

### Relativistic magnetized plasma

• In the case of relativistic strongly magnetized plasma: chemical potential  $\mu_e$  of electron plasma is large,  $\mu_e \gg m_e$ 

$$V_{ extsf{F}}\simeq \sqrt{1-m_e^2/\mu_e^2} 
ightarrow 1$$

• Plasma frequency has root dependence on magnetic field strength

$$\Omega_0\simeq 34.7~{
m keV}\sqrt{B/B_e}$$

• Small 
$$x_0 = \Omega_0/m_s$$
  $(x_0 \ll m_e/\mu_e)$   
 $W_{\text{pl+f}}^{\text{rel}} \simeq \frac{(G_F \Omega_0^2)^2}{64\pi^2 \alpha} m_s \sin^2(2\theta_s) \left(C_V^2 + C_A^2\right) \frac{\ln(2\mu_e/m_e) - 5/4}{1 - e^{-m_s/(2T)}}$   
• Large  $x_0$   $(m_e/\mu_e \ll x_0 < 1)$   
 $W_{\text{pl+f}}^{\text{rel}} \simeq \frac{(G_F m_s^2)^2}{64\pi^2 \alpha} m_s \sin^2(2\theta_s) \frac{(C_V^2 + C_A^2) x_0^4}{1 - e^{-m_s(1 + x_0^2)/(2T)}} \times \left[ (1 + x_0^2) \ln \frac{1}{x_0} - \frac{1}{8} (1 - x_0^2) (3 + x_0^2) \right]$ 

・ロ・・日・・ヨ・ ・ヨ・ つへぐ