

Damián Álvarez Piqueras on behalf of the ATLAS Collaboration

IFIC (CSIC - Universitat de València)

QFTHEP 2017

Yaroslavl, Russia

June 26 - July 3

2011-09-14 12:37:11 CEST

CSIC

Vniver§itat döValència

Introduction

- The current Standard Model (SM) was completed with the discovery of the Higgs boson at $m_h = 125 \text{ GeV}$ in 2012
- However, the theory lacks explanation for several phenomena and shows *naturalness* issues (fine-tuning, hierarchy)
- Many models beyond the SM (BSM) have been proposed to cover these issues, which imply the inclusion of additional Higgs bosons:
 - Neutral (CP-even H and CP-odd A)
 - Charged (singly H^{\pm} or doubly $H^{\pm\pm}$)
- Searches for these additional bosons are performed by looking for final states of their decays:
 - Fermionic, Bosonic, di-higgs

CUARKS CLEPTONS BOSONS HIGGS BOSON

∃ → < ∃</p>

Several of the BSM models imply the inclusion of additional Higgs bosons:

Several of the BSM models imply the inclusion of additional Higgs bosons:

Electroweak singlet

- Addition of real scalar field singlet S:
- Results in two mixing bosons: h and H

三日 のへの

<ロ> (日) (日) (日) (日) (日)

Several of the BSM models imply the inclusion of additional Higgs bosons:

Electroweak singlet

- Addition of real scalar field singlet S:
- Results in two mixing bosons: h and H

Two-Higgs-Doublet Model (2HDM)

- Two Higgs doublets: ϕ_1 , ϕ_2
- Five Higgs bosons: h, H, A, H^{\pm}
- Two parameters:
 - $\tan \beta \equiv v_1/v_2$, mixing angle α
- Several types, according to the coupling of doublets:

Туре	Description	u-quarks	d-quarks	e-leptons
1	Fermiophobic	ϕ_2	ϕ_2	ϕ_2
11	MSSM-like	ϕ_2	ϕ_1	ϕ_1
Х	Lepton-specific	ϕ_2	ϕ_2	ϕ_1
Y	Flipped	ϕ_2	ϕ_1	ϕ_2

JI NOR

<ロ> (日) (日) (日) (日) (日)

Several of the BSM models imply the inclusion of additional Higgs bosons:

Electroweak singlet

- Addition of real scalar field singlet S:
- Results in two mixing bosons: h and H

Two-Higgs-Doublet Model (2HDM)

- Two Higgs doublets: ϕ_1 , ϕ_2
- Five Higgs bosons: h, H, A, H^{\pm}
- Two parameters:
 - $\tan \beta \equiv v_1/v_2$, mixing angle α
- Several types, according to the coupling of doublets:

Type	Description	<i>u</i> -quarks	d-quarks	e-leptons
1	Fermiophobic	ϕ_2	ϕ_2	ϕ_2
11	MSSM-like	ϕ_2	ϕ_1	ϕ_1
Х	Lepton-specific	ϕ_2	ϕ_2	ϕ_1
Y	Flipped	ϕ_2	ϕ_1	ϕ_2

Minimal Supersymmetric SM (MSSM)

- SUSY in its minimal form
- Implements Type-II 2HDM with five Higgs bosons: *h*, *H*, *A*, *H*[±]
- At tree level, two parameters: $\tan \beta$ and m_A
- Higher-order corrections are fixed to scan phenomenological scenarios:

- hMSSM, m_h^{max} , $m_h^{\text{mod}\pm}$, ...

(日) (同) (三) (三) (三) (○) (○)

Several of the BSM models imply the inclusion of additional Higgs bosons:

Electroweak singlet

- Addition of real scalar field singlet S:
- Results in two mixing bosons: h and H

Two-Higgs-Doublet Model (2HDM)

- Two Higgs doublets: ϕ_1 , ϕ_2
- Five Higgs bosons: h, H, A, H^{\pm}
- Two parameters:
 - tan $\beta \equiv v_1/v_2$, mixing angle α
- Several types, according to the coupling of doublets:

Type	Description	<i>u</i> -quarks	d-quarks	e-leptons
1	Fermiophobic	ϕ_2	ϕ_2	ϕ_2
11	MSSM-like	ϕ_2	ϕ_1	ϕ_1
Х	Lepton-specific	ϕ_2	ϕ_2	ϕ_1
Y	Flipped	ϕ_2	ϕ_1	ϕ_2

Minimal Supersymmetric SM (MSSM)

- · SUSY in its minimal form
- Implements Type-II 2HDM with five Higgs bosons: *h*, *H*, *A*, *H*[±]
- At tree level, two parameters: $\tan \beta$ and m_A
- Higher-order corrections are fixed to scan phenomenological scenarios:

- hMSSM, m_h^{max} , $m_h^{\text{mod}\pm}$, ...

Higgs Triplet Model (HTM)

- Higgs triplet: $\vec{\phi} = (\phi^{++}, \phi^{+}, \phi^{0})$
- Seven Higgs bosons: $h, H, A, H^{\pm}, H^{\pm\pm}$

(日) (同) (三) (三) (三) (○) (○)

Several of the BSM models imply the inclusion of additional Higgs bosons:

Electroweak singlet

- Addition of real scalar field singlet S:
- Results in two mixing bosons: h and H

Two-Higgs-Doublet Model (2HDM)

- Two Higgs doublets: ϕ_1 , ϕ_2
- Five Higgs bosons: h, H, A, H^{\pm}
- Two parameters:
 - $\tan \beta \equiv v_1/v_2$, mixing angle α
- Several types, according to the coupling of doublets:

Туре	Description	<i>u</i> -quarks	d-quarks	e-leptons
1	Fermiophobic	ϕ_2	ϕ_2	ϕ_2
	MSSM-like	ϕ_2	ϕ_1	ϕ_1
х	Lepton-specific	ϕ_2	ϕ_2	ϕ_1
Y	Flipped	ϕ_2	ϕ_1	ϕ_2

Minimal Supersymmetric SM (MSSM)

- · SUSY in its minimal form
- Implements Type-II 2HDM with five Higgs bosons: *h*, *H*, *A*, *H*[±]
- At tree level, two parameters: $\tan \beta$ and m_A
- Higher-order corrections are fixed to scan phenomenological scenarios:

- hMSSM, m_h^{max} , $m_h^{\text{mod}\pm}$, ...

Higgs Triplet Model (HTM)

- Higgs triplet: $\vec{\phi} = (\phi^{++}, \phi^{+}, \phi^{0})$
- Seven Higgs bosons: $h, H, A, H^{\pm}, H^{\pm\pm}$

Other Models

- NMSSM: $h, H_1, H_2, A_1, A_2, H^{\pm}$
- Left-Right symmetric models (LSR)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のの()

Introduction

Many models beyond the SM (BSM) have been proposed to cover these issues:

- 2HDM, MSSM, HTM, NMSSM, LRS

• Analysis of Run 1 data excluded regions of parameters from these models:

Introduction

- Searches performed with the ATLAS detector
- Luminosity collected in Run 2 at $\sqrt{s} = 13 \,\text{GeV}$
 - 2015: 3.2 fb⁻¹
 - 2016: 35.6 fb $^{-1}$
- ⇒ Most of results were published with part of 2016 data
 - Total analyzed: 3.2 fb⁻¹ + [10-12] fb⁻¹
- Analysis with full 2016 data are in progress
- Last results will be covered here, in preparation for coming results!

Summary of the BSM Higgs Analysis

Neutral H to Bosons

- $\Rightarrow H \rightarrow \gamma \gamma$
- \Rightarrow $H \rightarrow WW \rightarrow \ell \nu \ell \nu$
- \Rightarrow $H \rightarrow WW \rightarrow Ivqq$
- \Rightarrow H \rightarrow ZZ \rightarrow 4ℓ
- $\Rightarrow H \rightarrow ZZ \rightarrow 2\ell + E_{T}^{miss}$
- \Rightarrow $H \rightarrow ZZ \rightarrow \ell \ell q q' / \nu \nu q q'$
- $\Rightarrow H \rightarrow Z\gamma$
- $A \rightarrow Zh$

Neutral H to Fermions

- \Rightarrow H/A $\rightarrow \tau \tau$
- \Rightarrow *H*/*A* \rightarrow *tt*
- $H/A \rightarrow tt + jets$

Neutral *H* to SM di-higgs

- \Rightarrow H \rightarrow hh \rightarrow WW $\gamma\gamma$
- \Rightarrow $H \rightarrow hh \rightarrow bbbb$
- \Rightarrow $H \rightarrow hh \rightarrow bb\gamma\gamma$

Charged Higgs H^{\pm} , $H^{\pm\pm}$

- $\Rightarrow H^{\pm} \rightarrow tb$
- $\Rightarrow H^{\pm} \rightarrow \tau \nu$
- $\Rightarrow H^{\pm\pm} \rightarrow e^{\pm}e^{\pm}$

Luminosity Legend

- Only $2015 = 3.2 \text{ fb}^{-1}$
- Partial 2016 $\sim 15 \mathrm{fb}^{-1}$
- Full 2016 -

Neutral Higgs to Bosonic final states

三日 のへで

イロン イ団と イヨン イヨン

$H ightarrow \gamma \gamma$ - 15.4 fb⁻¹

ATLAS-CONF-2016-059

- In December 2015, ATLAS (and CMS) reported an excess or $\sim 4\sigma$ around 750 GeV with 3.2 fb $^{-1}$
- Latest ATLAS result with 15.4 fb⁻¹ show no excess (< 1σ)
- Analysis limited to spin-0 resonance
- Event selection
 - 2 photons: $m_{\gamma} > (40 \text{ GeV}, 30 \text{ GeV})$
 - Decay products: $p_{\mathrm{T}}^{\gamma1} > 0.4~m_{\gamma1}$, $p_{\mathrm{T}}^{\gamma2} > 0.3~m_{\gamma2}$
 - Invariant mass $m_{\gamma\gamma} > 150 \, {
 m GeV}$

イロト イポト イヨト イヨ

Damián Álvarez Piqueras (IFIC-UV)

Neutral and Charged BSM Higgs bosons with ATLAS

$H \rightarrow \gamma \gamma$ - 15.4 fb⁻¹ ATLAS-CONF-2016-059

- In December 2015, ATLAS (and CMS) reported an excess or $\sim 4\sigma$ around 750 GeV with 3.2 fb $^{-1}$
- Latest ATLAS result with 15.4 fb⁻¹ show no excess (< 1σ)
- Analysis limited to spin-0 resonance
- Event selection
 - 2 photons: $m_{\gamma} > (40 \text{ GeV}, 30 \text{ GeV})$
 - Decay products: $p_{\mathrm{T}}^{\gamma1} >$ 0.4 $m_{\gamma1}$, $p_{\mathrm{T}}^{\gamma2} >$ 0.3 $m_{\gamma2}$
 - Invariant mass $m_{\gamma\gamma} > 150 \, \text{GeV}$

Neutral and Charged BSM Higgs bosons with ATLAS

 $H \rightarrow WW \rightarrow \ell \nu \ell \nu$ - 13.2 fb⁻¹

- Update of extended search of the leptonic decay of WW analysis to high-mass region (m_{WW} > 300 GeV) for NWA and LWA
- Three orthogonal categories: 0-jet (ggF oriented), 1 jet and \geq 2 jets (both VBF oriented)
- Discriminating variable: transverse mass (m_T)
- Main event selection

$$m_{T} = \sqrt{\left(E_{T}^{\ell\ell} + E_{T}^{\text{miss}}\right)^{2} - \left(p_{T}^{\ell\ell} + E_{T}^{\text{miss}}\right)^{2}}$$

< 口 > < 同 > < 三 > < 三

- Two Opposite Sign (OS) Different Flavour (DF) leptons, with $p_{\rm T}$ > (45 GeV, 30 GeV)
- Invariant mass $m_{\ell\ell} > 55~{
 m GeV}$
- $\text{ b-veto, } \Delta \eta_{\ell\ell} < 1.8, \text{ } m_{\rm T}^W > 50 \text{ GeV} \qquad \qquad m_{T}^W = \sqrt{2 \rho_{\rm T}^\ell E_{\rm T}^{\rm miss}(1 \cos(\phi_\ell \phi(E_{\rm T}^{\rm miss})))}$

$H ightarrow WW ightarrow \ell u qq'$ - 13.2 fb⁻¹

- Diboson resonance (WW) in the NWA with mass width of 4 GeV
- One W decays leptonically (e or μ plus neutrino) and the other hadronically
- The two jets are boosted and can be reconstructed as a single jet (J)
- Main event selection:
 - $W_{
 m lep}$: One lepton, Missing $E_{
 m T}$ > 100 GeV, $p_{
 m T}(\ell
 u)$ > 200 GeV
 - $p_{\rm T}^{J}$ and $p_{\rm T}^{\ell\nu}$ $> 0.4 m_{J,\ell\nu}$, Invariant mass $m_{J} \sim$ 15 GeV of m_{W}
 - b-jet veto, sub-jet structure checks, which defines two categories: high-purity and low-purity

Boosted jets: Increasing transverse momentum

Damián Álvarez Piqueras (IFIC-UV)

Neutral and Charged BSM Higgs bosons with ATLAS

$H \rightarrow ZZ \rightarrow 4\ell$ - 15.8 fb⁻¹

- Extended search of ZZ analysis to high-mass region ($m_{4\ell}>$ 140 GeV) in NWA and LWA
- In NWA, two categories:
 - VBF: 2 jets, $m_{jj} >$ 400 GeV, $\Delta \eta_{jj} >$ 3.3
 - ggF: rest
- Main event selection
 - Two pairs of OS SF leptons with $p_{\rm T}$ >(20 GeV,15 GeV,10 GeV,reco)
 - Leading pair inv. mass: 50 GeV $< m_{12} < 106$ GeV
 - Sub-Leading pair inv. mass: $12 \, {
 m GeV} < m_{34} < 115 \, {
 m GeV}$

Signal Region

ATLAS-CONF-2016-079

Other bosonic channels

Damián Álvarez Piqueras (IFIC-UV) Neutral and Charged B

Neutral and Charged BSM Higgs bosons with ATLAS

30th June 2017 12 / 25

Neutral Scalars to Fermionic final states

$A/H \rightarrow \tau \tau$ - 13.3 fb⁻¹ ATLAS-CONF-2016-085

- Searching for heavy resonance in di-au events in mass range between 200 and 1200 GeV
- Results interpreted in different MSSM scenarios
- In MSSM, large $\tan \beta$ enhances coupling of H with *down* fermions: τ and *b*
- Two main categories: b-tagged (bbH oriented) and b-veto (ggF)
- Two final states
 - Fully hadronic: two hadronic au with trigger and p_{T} variable requirements
 - Semi-leptonic: combination of single-lepton and E_T^{miss} triggers, adds high-E_T^{miss} category

$A/H \rightarrow au au$ - 13.3 fb⁻¹

ATLAS-CONF-2016-085

Excl. limits on production $\sigma \times BR$ for model-independent (ggF,bbH) and model-dependent (m_h^{mod+} , hMSSM)

Neutral and Charged BSM Higgs bosons with ATLAS

$A/H \rightarrow t\bar{t}$ - Run 1: 20.3 fb⁻¹ at $\sqrt{s} = 8 \,\text{GeV}$ ATLAS-CONF-2016-073

- Update of analysis adding inference of signal with SM tt background in mass range 400-800 GeV
- Signal: $A/H \rightarrow t\bar{t} \rightarrow b\bar{b}W(\rightarrow q\bar{q})W(\rightarrow \ell\nu)$
- Aimed for resolved topology (top quark with low p_T and thus, separated jets)
- Main event selection
 - = 2 leptons with $p_{\rm T}$ >25 GeV, $E_{\rm T}^{\rm miss}$ >20 GeV, $E_{\rm T}^{\rm miss}$ + $m_{\rm T}^W$ > 60 GeV
 - Four jets, at least one b-tagged → three categories

Signal interference for m_A =500 GeV, tan β =0.4

Di-Higgs production

Damián Álvarez Piqueras (IFIC-UV) Neutral and Charged BSM Higgs bosons with ATLAS

◆□ > ◆□ > ◆目 > ◆目 > 三日 のへで

13.3 fb^{-1} $H \rightarrow hh \rightarrow WW\gamma\gamma$

- · Semileptonic decay of WW and two photons
- Large BR of WW and clean signature of $\gamma\gamma$ and one lepton
- Low BR of $\gamma \gamma$ at high mass so range: 260-500 GeV
- Main event selection
 - 2 γ with $p_{\rm T}$ > (35 GeV, 25 GeV) and $m_{\gamma\gamma}$ between 105-160 GeV
 - Two jets with b-veto
 - Two categories: 1-lepton (SR) and 0-leptons (CR)

$$-$$
 SR: $|m_{\gamma\gamma} - m_H| < 2\sigma_{\gamma\gamma}$

One-lepton region $m_{\gamma \gamma}$ continuum

ATLAS-CONF-2016-071

Damián Álvarez Piqueras (IFIC-UV)

Neutral and Charged BSM Higgs bosons with ATLAS

18 / 25

Other di-higgs analysis

$H ightarrow bb\gamma\gamma$ - 3.2fb⁻¹

- Benefit from large bb BR and clean $\gamma\gamma$
- Limited mass range: 300-1000 GeV
- Two γ , *b*-jets, $m_{\gamma\gamma}$: 105-160 GeV

$H \rightarrow bbbb$ - 13.2fb⁻¹

- Resolved analysis
 - Two h-candidates with m_{bb} \sim m_H
 - Mass range between 300-1200 GeV
- Boosted analysis:
 - Two large-R jets
 - = $p_{\mathsf{T}\,\dot{\iota}}^{J}$ (450 GeV, 250 GeV), $|\eta| <$ 2.0 and $m_{J} >$ 50 GeV

Resolved SR (red) and CR (yellow)

Charged Higgs boson

◆□ > ◆□ > ◆目 > ◆目 > 三日 のへで

ATLAS-CONF-2016-088

- Searching H^{\pm} in final states with one τ , $E_{\rm T}^{\rm miss}$ and a top quark in mass range of 200-2000 GeV
- Signal coming from tbH^{\pm} and tH^{\pm} modes 4/5 FS
- Analysis uses fully hadronic decays of au and top quark
- Interpretation of result in hMSSM m^{mod-}_h scenarios
- Main event selection

 $H^{\pm} \rightarrow \tau \nu$ - 13.2 fb⁻¹

- One hadronic τ with p_T >40 GeV, E_T^{miss} trigger
- Three jets with at least one of them being b-tagged
- $E_{\rm T}^{\rm miss}$ >150 GeV and $m_{\rm T}$ >50 GeV

Neutral and Charged BSM Higgs bosons with ATLAS

30th June 2017 21 / 25

$H^{\pm} \rightarrow tb$ - 13.2 fb⁻¹ ATLAS-CONF-2016-089

- Searching H^{\pm} in final states with one lepton + (b) jets
- Production of H^\pm in association with tb is explored in mass range 300 to 1000 GeV
- Analysis uses MVA technique: BDT
- Interpretation of result in $m_h^{\text{mod-}}$ scenario of MSSM
- Main event selection
 - One lepton (e or μ) with $p_{\rm T}$ >25 GeV
 - Four jets with at least two of them b-tagged
 - Four SR and CR are defined, according to the distribution of jets and *b*-jets

Post-fit distribution of predicted and observed events in the four CR (left) and the four SR (right)

BDT output for the SR: 5j-3b cat

30th June 2017 22 / 25

$H^{\pm\pm} ightarrow ee$ - 13.9 fb⁻¹

ATLAS-CONF-2016-051

- Doubly-charged Higgs bosons arise in some BSM: LRSM, HTM,...
- Pairs of high- p_T isolated SS e^{\pm} can be enhanced
- Main event selection
 - 4 regions: Signal Region (SR), Validation Region (VR) and 2 Control Region (CR)
 - SR: At least one SS pair of e with m_{ee} > 300 GeV
 - OS CR for deriving scaling factors for Drell-Yan and tt backgrounds
 - Diboson CR for deriving respective factor: OS electron pair in Z mass window and additional SS pair with $m_{ee}\,>\,200~{\rm GeV}$
 - SS VR: Same selection than SR but for mee < 200 GeV

Distribution of m_{ee} after full event selection and a fit to the data

Neutral and Charged BSM Higgs bosons with ATLAS

< □ > < □ > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Conclusions

- Current status of the heavy Higgs searches have been reviewed
- Most of the analysis have been published with half of luminosity collected in 2016 ($<16\,{\rm fb}^{-1})$
- ATLAS has many more results in heavy searches!
 - ATLAS heavy Higgs results
- No excesses over SM have been found, we need to wait :)
- Analysis with full 2016 data are in process
 - Get ready for updates in next months!
- Also, data-taking of 2017 have started, ATLAS have collected almost 5 fb⁻¹ already!

★ ∃ →

Conclusions

Decay	Analysis	Code	L (fb ⁻¹)	Date
Bosonic	A ightarrow Zh	ATLAS-CONF-2016-015	3.2	16/03/2016
	$H ightarrow WW to \ell u q q$	ATLAS-CONF-2016-062	13.2	03/08/2016
	$H ightarrow Z \gamma$	ATLAS-CONF-2016-044	13.3	03/08/2016
	$H ightarrow Z\ell\ell + et$	ATLAS-CONF-2016-056	13.3	03/08/2016
	$H ightarrow WW ightarrow \ell u \ell u$	ATLAS-CONF-2016-074	13.2	04/08/2016
	$H ightarrow ZV ightarrow \ell\ell q q/ u u q q$	ATLAS-CONF-2016-082	13.2	04/08/2016
	$H ightarrow ZZ ightarrow 4\ell$	ATLAS-CONF-2016-079	15.8	04/08/2016
	$H ightarrow \gamma \gamma$	ATLAS-CONF-2016-059	15.4	05/08/2016
Fermionic	$A/H \rightarrow tt$	ATLAS-CONF-2016-073	20.3*	03/08/2016
	A/H ightarrow au au	ATLAS-CONF-2016-085	13.3	04/08/2016
	A/H ightarrow au u	ATLAS-CONF-2016-104	13.2	28/09/2016
	$H^{\pm} \rightarrow au u$	ATLAS-CONF-2016-088	13.2	04/08/2016
Charged	$H^\pm ightarrow tb$	ATLAS-CONF-2016-089	13.2	09/08/2016
	$H^{\pm\pm} ightarrow$ ee	ATLAS-CONF-2016-051	13.9	03/08/2016
Di-higgs	$H ightarrow hh ightarrow bb \gamma \gamma$	ATLAS-CONF-2016-004	3.2	14/03/2016
	H ightarrow hh ightarrow bbbb	ATLAS-CONF-2016-049	13.2	03/08/2016
	$H \rightarrow hh \rightarrow WW\gamma\gamma$	ATLAS-CONF-2016-071	13.3	04/08/2016

* taken in Run 1 at $\sqrt{s} = 8 \, {
m GeV}$

Backup

Damián Álvarez Piqueras (IFIC-UV) Neutral and Charged BSM Higgs bosons with ATLAS

30th June 2017 26 / 25

< □ > < □ > < Ξ > < Ξ > < Ξ | = の < ⊙

$H ightarrow Z \gamma$ - 13.3 fb⁻¹ ATLAS-CONF-2016-044

- $Z\gamma$ decay in 250-2400 GeV
- Z decays leptonically (e or μ) and a photon, due to easy measurement in low background
- The two jets are boosted, so they can be reconstructed as a single jet (J)
- Main event selection:
 - Z candidate with two OS leptons and $m_{\ell\ell} \sim 15\% m_Z$
 - $p_{\rm T}^{\gamma}$ > 30% $m_{Z\gamma}$
 - Two categories according to lepton flavour

Exclusion limit on $\sigma \times BR(X \rightarrow Z\gamma)$

< 口 > < 同 > < 三 > < 三

H ightarrow ZV - 13.2 fb⁻¹

- Decays of ZZ and ZW resonances in $\ell \ell qq$ and $\nu \nu qq'$ final states
- $ZV \rightarrow \ell \ell q q$
 - Uses both boosted and resolved V decay
 - Final discriminant is the invariant mass
- $ZV \rightarrow \nu \nu \eta q$
 - Uses only resolved reconstruction of V decay
 - Final discriminant is the transverse mass (m_T)

 $H \rightarrow ZV \rightarrow \nu \nu \eta q$

イロト イポト イヨト イヨ

ATLAS-CONF-2016-082

$H ightarrow Z(to\ell\ell) + E_{ m T}^{ m miss}$ - 13.3 fb⁻¹

ATLAS-CONF-2016-056

- $H
 ightarrow Z(
 ightarrow \ell \ell) Z(
 ightarrow
 u
 u)$ in mass range 300-1000 GeV
- Discriminant m_T^{ZZ} , defined as:
- Main event selection:
 - Two OS SF leptons and $E_{\mathrm{T}}^{\mathrm{miss}}$ > 120 GeV

$$m_T^{ZZ} \equiv \left(\sqrt{m_Z^2 + \left| p_T^{\ell\ell} \right|^2} + \sqrt{m_Z^2 + \left| E_T^{\text{miss}} \right|^2} \right)^2 - \left| p_T^{\ell\ell} + \vec{E}_T^{\text{miss}} \right|$$

- $-\Delta R_{\ell\ell}$ < 1.8, $\Delta \phi(Z, E_{\mathrm{T}}^{\mathrm{miss}})$ < 2.7
- Cuts in transverse variables of $E_{\rm T}^{\rm miss}$ -jet and $E_{\rm T}^{\rm miss}$ -Z systems

$H \rightarrow hh \rightarrow bb\gamma\gamma$ - 3.2 fb⁻¹

- $bb\gamma\gamma$ final state benefits from large BR from bb pair and clean diphoton signal
- However, because of the BR of $\gamma\gamma$ the mass range is limited from 275-400 GeV
- Main event selection
 - Two isolated photons with m_{γγ} in range 105-160 GeV, two b-jets with m_{bb} in range 95-135 GeV
 - CR: Two non-b-tagged jets to estimate continuum background
 - Additional criteria: Crystal Ball fit to $m_{\gamma\gamma}$ to constrain $m_{\gamma\gamma}$ range and linear parametrization to account for resonances not simulated

Not enough statistics to exclude the modest excess in Run 1: 3.0σ local (2.1 σ global) at 300 GeV

イロト イポト イヨト イヨト

- Search for heavy Higgs decaying to pair of SM Higgs via $H \rightarrow hh$ and final state bbbb
- Two strategies: resolved and boosted
- Resolved analysis: Two h candidates with low p_T : separated decay objects
 - Two pairs of two *b*-jets, $m_{bb} \sim h$
 - Angular conditions on the pairing of b-jets to form h candidates
 - Mass range between 300 and 1200 GeV
- Boosted analysis: h candidates with high p_T : decay objects merged in large jet
 - Two large-R jets (anti- k_t with R = 1)
 - Candidates: $p_{
 m T}$ >(450 GeV,250 GeV), $|\eta|$ < 2.0 and m_J > 50 GeV
 - Central jets: $|\Delta\eta_{hh}| < 1.7$
 - Each large-R jet needs at least one b-tagged R = 0.2 track jet.

イロト イポト イヨト イヨト