Neutrino photoproduction on the electron in dense magnetized medium

Denis Shlenev

Yaroslavl State University, Russia

June 30, 2017

QFTHEP 2017, Yaroslavl, Russia

In collaboration with Dmitriy Rumyantsev and Alexander Kuznetsov

(D) (A) (A)

D. Rumyantsev, A. Kuznetsov and D. Shlenev Neutrino photoproduction ...

 $e\gamma \rightarrow e\nu\bar{\nu}$ (V. Skobelev 2000, D. Rumyantsev and M. Chistyakov 2008, A. Borisov et al 2012) Where? The outer crust of magnetar, $B \sim 10^{14} - 10^{16}$ G., $B \gg B_e, B_e = m^2/e \simeq 4.41 \times 10^{13}$ G, $T \sim 10^8 - 10^9$ K, $T \ll m, \rho_6 = 10^6$ g/cm³, $\rho_6 \le \rho \le 10^3 \rho_6$

N. Mikheev, D. Rumyantsev, M. Chistyakov 2014 - photon dispersion properties were taken into account in non-resonant case.

Boundary between inner and outer crust of magnetar $\rho \gtrsim \rho_9 = 10^9 \text{g/cm}^3$ Higher Landau levels of virtual electron are excited. Resonance on virtual electron becomes possible.

(D) (B) (E) (E)

Introduction

Some notations

 $p^{\mu} (p'^{\mu})$ are the momenta of initial (final) electrons, q^{μ} and q'^{μ} are the momenta of initial photon and neutrino pair, $(ab)_{\perp} = a_{x}b_{x} + a_{y}b_{y}, (ab)_{\parallel} = a_{0}b_{0} - a_{z}b_{z}, (a\varphi b) = a_{y}b_{x} - a_{x}b_{y}.$ $\varphi_{\alpha\beta} = F_{\alpha\beta}/B$ and $\tilde{\varphi}_{\alpha\beta} = \frac{1}{2}\varepsilon_{\alpha\beta\mu\nu}\varphi_{\mu\nu}$ are the dimensionless field tensor and dual field tensor correspondingly.

A general expression for the neutrino emissivity (the loss of energy from a unit volume per unit time due to the neutrino escape) can be defined as follows:

$$Q = \frac{1}{V} \int \prod_{i} \mathrm{d}\Gamma_{i} f_{i} \prod_{f} \mathrm{d}\Gamma_{f} (1 \pm f_{f}) q_{0}^{\prime} \frac{|S_{if}|^{2}}{\tau},$$

where $d\Gamma_i (d\Gamma_f)$ are the number of states of initial (final) particles; $f_i (f_f)$ are the corresponding distribution functions, the sign + (-) corresponds to final bosons (fermions); q'_0 is the neutrino pair energy; V is the plasma volume, τ is the interaction time, S_{if} is the S-matrix element.

When calculating S-matrix element we will consider the case of relatively low momentum transfers $|q'^2| \ll m_W^2$. Under this condition, the electroweak interaction can be considered in the local limit by using the effective Lagrangian

$$\mathcal{L} = rac{G_F}{\sqrt{2}} \left[ar{\Psi} \gamma_lpha (C_V + C_A \gamma_5) \Psi
ight] j_lpha + e (ar{\Psi} \gamma_lpha \Psi) A_lpha \, ,$$

where $C_V = \pm 1/2 + 2\sin^2 \theta_W$, $C_A = \pm 1/2$, $j_\alpha = \bar{\nu}\gamma_\alpha(1+\gamma_5)\nu$ - is the neutrino current.

"+" –
$$u_e$$
,
"-" – u_μ and $u_ au$

(D) (A) (A)

Resonance in the process $\gamma e \rightarrow e \nu \bar{\nu}$

$$S_{e\gamma \to e\nu\bar{\nu}}^{s's} = \frac{i(2\pi)^3 \delta_{0,y,z}^{(3)}(P - p' - q')}{\sqrt{2q_0 V 2q'_0 V 2E_\ell L_y L_z 2E'_{\ell'} L_y L_z}} \mathcal{M}_{e\gamma \to e\nu\bar{\nu}}^{s's},$$

s,s' - polarization state of initial and final electrons $s^{\prime\prime}$ - polarization state of virtual electron

$$\mathcal{M}_{e\gamma \to e\nu\bar{\nu}}^{s's} \simeq \sum_{n=0}^{\infty} \sum_{s''} \int \mathrm{d}X_1 \mathrm{d}Y_1 \frac{(...)}{P_{\parallel}^2 - M_n^2 + \mathrm{i}\mathcal{I}_{\Sigma}^{s''}(P)} + \dots$$

$$P_{\mu} = (n + n) \quad \alpha = 0, 2, 3$$

$$\begin{aligned} \mathcal{F}_{\alpha} &= (p+q)_{\alpha}, \ \alpha = 0, 2, 3. \\ \mathcal{I}_{\Sigma}^{s''}(P) &= -\frac{1}{2} P_0 \Gamma_n^{s''}, \text{ (Jukovskiy, 1994)} \\ \Gamma_n^{s''} &= \text{full width of the change of the electron state} \end{aligned}$$

We can present $\Gamma_n^{s''}$ in the following way (Weldon, 1983).

$$\Gamma_n^{s''} = \Gamma_n^{(abs)\,s''} + \Gamma_n^{(cr)\,s''} \simeq \Gamma_{e_n \to e_{\ell'}\gamma}^{(cr)\,s''} \left[1 + \mathrm{e}^{(\mathcal{E}_n'' - \mu)/T} \right]$$

Total width of electron creation in state n,s"

$$\Gamma_{n}^{(cr)\,s''} = \sum_{n=0}^{\infty} \sum_{s''} \frac{1}{2E_{n}''} \int \frac{d^{3}k}{2q_{0}(2\pi)^{3}} f_{\gamma}(q_{0}) \frac{d^{2}p}{2E_{\ell}} f_{e}(E_{\ell}) \times (2\pi)^{3} \delta^{(3)}(P - p'') |M_{e_{\ell}\gamma \to e_{n}}|^{2}$$

イロト イヨト イヨト イヨト

In the case of narrow resonance peak:

$$\frac{1}{(P_{\parallel}^2-m_e^2-2eBn)^2+(\frac{1}{2}P_0\Gamma_n^{s^{\prime\prime}})^2}\simeq\frac{2\pi}{P_0\Gamma_n^{s^{\prime\prime}}}\delta(P_{\parallel}^2-m_e^2-2eBn)$$

$$\delta(P_{\parallel}^{2} - m_{e}^{2} - 2eBn) = \frac{1}{2E_{n}''}\delta(P_{0} - E_{n}''),$$

where $E''_n = \sqrt{p''_z^2 + m_e^2 - 2eBn}$. The amplitude squared, averaged over polarizations of initial photon, is factorized

$$|\mathcal{M}_{\gamma e \to e \nu \bar{\nu}}|^2 \simeq \sum_{n=1}^{\infty} \frac{2\pi}{P_0 \Gamma_n^{s''}} \delta(P_{\parallel}^2 - m_e^2 - 2eBn) \left| \mathcal{M}_{e_{\ell} \gamma \to e_n} \right|^2 \left| \mathcal{M}_{e_n \to e_{\ell'} \nu \bar{\nu}} \right|^2.$$

Resonance in the process $\gamma e \rightarrow e \nu \bar{\nu}$

The neutrino emissivity due to the process $\gamma {\it e}_\ell \to {\it e}_{\ell'} \nu \bar{\nu}$ can be written as

$$Q_{\gamma e_{\ell} \to e_{\ell'} \nu \bar{\nu}} = \sum_{n=1}^{\infty} \sum_{\ell'=0}^{n-1} Q_{e_n \to e_{\ell'} \nu \bar{\nu}},$$

where $Q_{e_n \to e_{\ell'} \nu \bar{\nu}}$ is the neutrino emissivity due to the process $e_n \to e_\ell \nu \bar{\nu}$.

$$\begin{aligned} Q_{e_n \to e_{\ell'} \nu \bar{\nu}} &= \frac{1}{L_x} \int \frac{\mathrm{d}^2 p''}{(2\pi)^2 \, 2E_n''} \, f_e(E_n'') \frac{\mathrm{d}^2 p'}{(2\pi)^2 \, 2E_{\ell'}'} \, \left[1 - f_e(E_{\ell'}') \right] \\ &\times \frac{\mathrm{d}^3 p_1}{(2\pi)^3 \, 2\varepsilon_1} \, \frac{\mathrm{d}^3 p_2}{(2\pi)^3 \, 2\varepsilon_2} \, q_0' \, (2\pi)^3 \, \delta^3(p'' - p' - q') |\mathcal{M}_{e_n \to e_{\ell'} \nu \bar{\nu}}|^2 \\ &- \text{neutrino emissivity due to the process } e_n \to e_{\ell'} \nu \bar{\nu} \\ &\qquad (D. \ G. \ \text{Yakovlev et al. Phys. Rep. 2001).} \end{aligned}$$

(日) (四) (三) (日) (日)

- We have considered the neutrino photoproduction on an electron, $e\gamma \to e \nu \bar{\nu}$, in dense magnetized medium in resonant case.
- It has been shown that in the case of resonance on the virtual electron, the neutrino emissivity due to the process $\gamma e_0 \rightarrow e_0 \nu \bar{\nu}$ can be expressed in terms of the neutrino emissivity due to the process $e_n \rightarrow e_0 \nu \bar{\nu}$.

Thank you!!!

D. Rumyantsev, A. Kuznetsov and D. Shlenev Neutrino photoproduction ...

E

Appendix: electron wavefunctions in external magnetic field

 $\Psi_{p',\ell'}^{s'}(Y)$ and $\Psi_{p,\ell}^{s}(X)$ – eigenfunctions of covariant operator $\hat{\mu}_z$ (Sokolov, Ternov 1974).

$$\begin{aligned} \hat{\mu}_z &= m_f \Sigma_z - i\gamma_0 \gamma_5 [\vec{\Sigma} \times \vec{P}]_z \\ \text{where } \vec{P} &= -i\vec{\nabla} + e_f \vec{A}, \ \vec{\Sigma} &= \gamma_0 \gamma_5 \vec{\gamma}, \ A^\lambda = (0, 0, xB, 0). \\ \hat{\mu}_z \Psi^s_{p,\ell}(X) &= s \ M_\ell \Psi^s_{p,\ell}(X), \quad s = \pm 1 \\ \Psi^s_{p,\ell}(X) &= \frac{e^{-i(E_\ell X_0 - p_y X_2 - p_z X_3)} \ U^s_\ell(\xi)}{\sqrt{4E_\ell M_\ell (E_\ell + M_\ell) (M_\ell + m_f) L_y L_z}} \\ V &= L_x L_y L_z, \end{aligned}$$

$$E_\ell = \sqrt{M_\ell^2 + p_z^2}\,,\quad M_\ell = \sqrt{m_f^2 + 2eta\ell}\,,\quad eta = eE$$