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Motivation

Neutrino physics plays a decisive role in astrophysical cataclysms
such as supernova explosions. The studies of neutrino interactions
and in particular neutrino-electron processes in an external active

medium are of considerable interest.

In the SN explosion, as in any astrophysical applications, the most
interesting are the mean values of the neutrino energy and

momentum losses.
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Motivation (cont’d)

Bezchastnov & Haensel (1996) performed numerical
calculations of the differential cross-section of the
neutrino-electron scattering in dense magnetized plasma in the
limit of rather weak magnetic field B , eB < µE (µ is the
plasma chemical potential, E is the typical neutrino energy).
Kuznetsov & Mikheev (1999, 2000) evaluated the probability
of the total sum of νe processes (ν → νe−e+, νe∓ → νe∓,
νe−e+ → ν) and the volume density of the neutrino energy
and momentum losses, integrated over the momenta of the
plasma electrons, in a strong magnetic field,
eB � (µ2,T 2,E 2)� m2

e , (T is the plasma temperature);
electrons and positrons occupied only the ground Landau
levels.
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Motivation (cont’d)

Mikheev & Narynskaya (2000, 2003) evaluated the probability
of the νe → νe process and the volume density of the neutrino
energy and momentum losses, summarized over all initial
states of the plasma electrons, in a moderate magnetic field,
while the density of plasma is large:
µ2 > eB � (T 2,E 2)� m2

e , and eB � µE .
It was concluded that transitions were dominating when both
initial and final electrons occupied the same Landau levels.

The purpose of the present research is to calculate analytically the
probability of the νe → νe process and the volume density of the
neutrino energy and momentum losses, for a more general case
when the initial and final electrons could occupy any physically

allowed Landau levels.
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Solutions of the Dirac equation in a magnetic field

There exist several descriptions of solving the Dirac equation in an
external magnetic field, e.g.:

M. H. Johnson & B. A. Lippmann (1949)
A. I. Akhiezer & V. B. Berestetskii, Quantum Electrodynamics
(1965)
A. A. Sokolov & I. M. Ternov, Synchrotron Radiation (1968)
D. B. Melrose & A. J. Parle (1983)
K. Bhattacharya & P. B. Pal (2004)
I. A. Balantsev, Yu. V. Popov & A. I. Studenikin (2011)
A. V. Kuznetsov & N. V. Mikheev, Electroweak Processes in
External Active Media (2013)
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Solutions of the Dirac equation in a magnetic field

We use the solutions which are the eigenstates of the covariant
operator of a magnetic polarization (Sokolov, 1968):

µ̂z = meΣz − iγ0γ5[Σ× P̂]z µ̂z Ψ±p,n(X ) = ±Mn Ψ±p,n(X )

where P̂ = −i∇ + eA. Landau gauge: Aµ = (0, 0, xB, 0).

Ψs
p,n(X ) =

e−i(εnt−pyy−pzz)√
4εnMn(εn + Mn)(Mn + me)LyLz

us
n(ξ)

where εn =
√

M2
n + p2

z , Mn =
√

m2
e + 2βn, β = eB .
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Solutions of the Dirac equation in a magnetic field

u−n (ξ) =


−i
√
2βn pzVn−1(ξ)

(εn + Mn)(Mn + me)Vn(ξ)

−i
√
2βn(εn + Mn)Vn−1(ξ)

−pz(Mn + me)Vn(ξ)

 , u+
n (ξ) = . . .

The harmonic oscillator functions Vn(ξ) (n = 0, 1, 2, . . . ) are
expressed via Hermite polynomials Hn(ξ):

Vn(ξ) =
β1/4e−ξ2/2√

2nn!
√
π

Hn(ξ) , ξ =
√
β

(
x +

py

β

)
Polarization amplitudes are written in manifestly relativistic

invariant form.
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The process of the νe → νe scattering

The effective local Lagrangian:

L = −GF√
2

[
ēγα(CV − CAγ5)e

] [
ν̄γα(1− γ5)ν

]
The constants depend on the neutrino flavor:

C (e)
V = +

1
2

+ 2 sin2 θW , C (e)
A = +

1
2

C (µ,τ)
V = −1

2
+ 2 sin2 θW , C (µ,τ)

A = −1
2
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The process of the νe → νe scattering

The S matrix element of the subprocess νe−(`) → νe−(n)

S = i
GF√
2

(2π)3 δ(ε′n − ε` − q0) δ(p′y − py − qy ) δ(p′z − pz − qz)√
2EV 2E ′V 2ε`LyLz 2ε′nLyLz

×

×e−q2
⊥/4eB−iqx (py+p′y )/2eB [ū(p′‖) ̂(CV − CAγ5) u(p‖)]

where q = P − P ′ = p′ − p, ε` and ε′n are the energies of the initial
and final electrons, q⊥ is the projection of the vector q on the

plane perpendicular to the vector B = (0, 0,B), q2
⊥ = q2

x + q2
y , and

jα = ν̄(P ′)γα(1− γ5)ν(P) is the Fourier tranform of the current of
the left-handed neutrinos.
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The process of the νe → νe scattering

The probability of the subprocess νe−(`) → νe−(n) is obtained by
integration over the initial and final electron momentum states and

by summation over the polarization states

W`n =
∑
s,s′

W ss′
`n = W−−

`n + W−+
`n + W+−

`n + W++
`n
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The process of the νe → νe scattering

W(νe−→νe−) =
1
T
∑
`

∑
n

∑
s,s′

∫
| S |2 dne− dn′e−

d3P ′ V
(2π)3 (1−f (E ′))

dne− =
dpy dpz Ly Lz

(2π)2 f (ε`), dn′e− =
dp′y dp′z Ly Lz

(2π)2 (1− f (ε′n))

where pz is the electron momentum along the magnetic field, py is
the generalized momentum which defines the position of the center

of a Gaussian packet along the x axis, x0 = −py/eB , while
ε` =

√
p2
z + 2eB`+ m2

e is the energy of the plasma electron
occupying the `-th Landau level, f (ε`) is a distribution function of

electrons: f (ε`) = [e(ε`−µ)/T + 1]−1.
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The process of the νe → νe scattering

The probability of the subprocess νe−(`) → νe−(n)

W`n =
eB

(2π)416E

∫
d3P ′

E ′
(1− f (E ′))

×
∫

dpz

ε′n ε`
δ(ε′n − ε` − q0) f (ε`) (1− f (ε′n))

∑
s,s′
|Mss′

`n |2 ,

Mss′
`n (s, s ′ = ±1) are the invariant polarization amplitudes.

It should be noted, that no upper limits arise from kinematics both
on the Landau level numbers `, n and the neutrino momenta, and
the convergence of both summation and integration is provided by

the distribution functions of initial and final electrons.
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The process of the νe → νe scattering
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The process of the νe → νe scattering

As the analysis shows, the subprocesses with ` = n, where both
initial and final electrons occupy the same Landau levels, are

dominating, but the subprocesses with ` 6= n can give an essential
contribution also. This means that the results for the probability

limited to the case ` = n, were underestimated.
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Neutrino force

The four-vector of the mean values of the neutrino energy and
momentum losses:

Qα = E
∫

(P − P ′)α dW = −E (I,F ) ,

where dW is the total differential probability of the process.

The zeroth component of Qα is connected with the mean energy
lost by a neutrino per unit time due to the process considered,

I = dE/dt.

The space components are connected with the mean neutrino
momentum loss per unit time, F = dP/dt.
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Neutrino force

An analysis of the four-vector Qα in a general case for the
magnetic field of arbitrary strength, where electrons can occupy the
states corresponding to excited Landau levels, now is in progress.

The force density F could lead to a very interesting consequences if
a strong toroidal magnetic field is generated in the supernova

envelope, providing an asymmetry of the supernova explosion and,
in particular, it can explain the phenomenon of high pulsar

kick-velocities.

A. Kuznetsov, E. Narynskaya, V. Savin Neutrino-electron scattering in a dense magnetized plasma



Conclusions

The probability of the νe → νe process in a dense magnetized
plasma is calculated analytically, for a general case when the
initial and final electrons could occupy any physically allowed
Landau levels.
The subprocesses dominate where both initial and final
electrons occupy exactly the same Landau levels, as it was
mentioned in previous calculations, but the subprocesses where
the Landau levels are not equal but close, are also essential.
An analysis of the four-vector Qα describing the mean values
of the neutrino energy and momentum losses, in a general case
for the magnetic field of arbitrary strength, where electrons
can occupy the states corresponding to excited Landau levels,
now is in progress.
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Thank you for your attention!
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