Charmless hadronic beauty decays at LHCb

Tim Williams on behalf of the LHCb collaboration

QFTHEP 2017

30/06/2017

Introduction

- Decays of *b*-hadrons to charmless hadronic final states typically proceed via either:
 - $b \rightarrow u$ tree level diagrams
 - b→s, d penguin loop diagrams

- Tree level decays involve factor V_{ub} :
 - Often similar amplitude to penguin decays, good for CP violation searches!
 - Charmless *b* decays are generally rare, $\mathcal{B} \sim \mathcal{O}(10^{-5} 10^{-8})$ experimental challenges.

• Two main routes to new physics with charmless b decays.

Measure Branching Fractions	Measure CPV observables
 Presence of new physics in	 New physics participants could
virtual loops could alter rate of	introduce significant levels of
decay process	CPV.
 Tree decay often forbidden or	 Measure both time dependent
similar amplitude - sensitivity	and independent CPV
to loop processes.	observables.

- Any significant discrepancies wrt. the standard model could be evidence for new physics.
- All measurements provide vital tests/input for QCD.

LHCb Detector

- Acceptance: 2 <η <5, 25% of bb pairs within acceptance
- 2 RICH sub detectors provide excellent PID ability, $\epsilon(K)$ ~ 95% with misID($\pi^- \rightarrow K^-$) ~ 5%
- Dedicated vertex locator (VELO) close to beam pipe finds secondary vertices, impact parameter resolution: $(15 \pm \frac{29}{P_T}) \,\mu\text{m}$

Detector Performance [Int. J. Mod. Phys. A 30 (2015) 1530022]

The LHCb Detector at the LHC [JINST 3 (2008) S08005]

Luminosity Levelling at LHCb

 Luminosity kept ~constant throughout duration of LHC fill by detuning beams.

- 2012 LHCb mean interactions per bunch crossing = 2.5 c.f ATLAS mean interactions per bunch crossing \sim 40.
- Lower detector occupancy allows precision hardware to be used make precision measurements.

Recent Charmless Hadronic Beauty Decay Results

Discussed in this Talk

- Updated branching fraction measurements of $B^0_{(s)} \rightarrow K^0_S hh'$ decays [LHCb-PAPER-2017-010]
- Observation of charmless baryonic decays $B^0_{(s)} \rightarrow p\overline{p}h^+h^-$ [arXiv:1704.08497]
- Search for the $B_s^0 \rightarrow \phi \eta'$ decay. [JHEP 05 (2017) 158]
- Observation of the decay $\Xi_b^- \rightarrow pK^-K^-$. [Phys. Rev. Lett. 118 (2017) 071801]
- First observation of a baryonic B_s^0 decay [arxiv:1704.07908]
- Measurement of matter-antimatter differences in beauty baryon decays [Nature Physics 13 (2017) 391]
- Evidence for the two-body charmless baryonic decay $B^+ \rightarrow p\overline{\Lambda}$ [JHEP 04 (2017) 162]
- Observation of the decay $B_s^0 \rightarrow \phi \pi^+ \pi^-$ and evidence for $B^0 \rightarrow \phi \pi^+ \pi^-$ [Phys. Rev. D 95 (2017) 012006]
- Observation of the annihilation mode decay $B^0 \rightarrow K^+ K^-$ [Phys. Rev. Lett. 118 (2017) 081801]
- Measurement of time-dependent CP-violating asymmetries in $B^0 \rightarrow \pi^+\pi^-$ and $B_s^0 \rightarrow K^+K^-$ decays at LHCb. [LHCb-CONF-2016-018]

Search for $B_s^0 \rightarrow K_S^0 K^+ K^-$ and Updated $B_{(s)}^0 \rightarrow K_S^0 hh'$ Branching Fraction Measurements

[LHCb-PAPER-2017-010] NEW!

<u>Tim Williams</u> (Birmingham) Charmless hadronic beauty decays at LHCb

Long Term Goals

- Possible to measure the weak phase of B^0 meson mixing in $b \rightarrow q\bar{q}s$ (q=s,d,u) transitions through the decays $B^0 \rightarrow K^0_S \pi^+ \pi^-$ and $B^0 \rightarrow K^0_S \kappa^+ \kappa^-$.
- Several extensions to the standard model introduce additional weak phases only present in $b \rightarrow q\overline{q}s$ decays compare to weak phase extracted from $b \rightarrow c\overline{c}s$ decays search for new physics.
- Possible to determine the CKM angle γ with input from the amplitude analysis of $B_s^0 \rightarrow K_s^0 \pi^+ \pi^-$ decays theoretically clean [Phys. Lett. B645 (2007) 201].

First steps

• Observe all $B^0_{(s)} \rightarrow K^0_{\rm S} hh'$ signal modes and measure branching fractions

- Previous LHCb analysis using only 1 fb⁻¹ of 2011 data made first observation of the B⁰_s→K⁰_sK[±]π[∓], B⁰_s→K⁰_sπ⁺π⁻ decays and confirmed the B⁰→K⁰_sK[±]π[∓]. [JHEP 10 (2013) 143]
- No significant evidence for the B⁰_s→K⁰_sK⁺K⁻ decay still unobserved.

Previous Branching Fraction Results (val \pm stat \pm syst $\pm \sigma(\mathcal{B}(K_s^0\pi^+\pi^-))$)

$$\begin{split} &\mathcal{B}(B^0 \!\rightarrow\! K^0_{\rm S} K^{\pm} \pi^{\mp}) \!= (6.4 \pm 0.9 \pm 0.4 \pm 0.3) \times 10^{-6} \\ &\mathcal{B}(B^0 \!\rightarrow\! K^0_{\rm S} K^+ K^-) \!= (19.1 \pm 1.5 \pm 1.1 \pm 0.8) \times 10^{-6} \\ &\mathcal{B}(B^0_{\rm S} \!\rightarrow\! K^0_{\rm S} \pi^+ \pi^-) \!= (14.3 \pm 2.8 \pm 1.8 \pm 0.6) \times 10^{-6} \\ &\mathcal{B}(B^0_{\rm S} \!\rightarrow\! K^0_{\rm S} K^{\pm} \pi^{\mp}) \!= (73.6 \pm 5.7 \pm 6.9 \pm 3.0) \times 10^{-6} \\ &\mathcal{B}(B^0_{\rm S} \!\rightarrow\! K^0_{\rm S} K^+ K^-) \!\in [0.2 - 3.4] \times 10^{-6}; \text{ at } 90\% \text{ CL} \end{split}$$

• New analysis using 3 fb^{-1} 2012+2011 LHCb data aims to observe $\mathcal{B}(B_s^0 \rightarrow K_s^0 \mathcal{K}^+ \mathcal{K}^-)$ mode.

- BDT classifier trained to remove combinatorial background.
 - Only use topological variables to avoid significant variation in efficiency over phase-space.
 - Separate optimisations for suppressed/favoured modes two separate selections for each final state.
- PID requirements used to remove mis-ID backgrounds e.g $\Lambda_b^0 \rightarrow K_s^0 p \pi^-$.

B⁰ Signal, B⁰_s Signal, Partially Reconstructed Background, Mis-ID Background, Mis-ID Background.

Tim Williams (Birmingham)

Charmless hadronic beauty decays at LHCb

30/06/2017 11 / 43

Unobserved $B_s^0 \rightarrow K_s^0 K^+ K^-$ channel Mass Fit [LHCb-PAPER-2017-010]

Suppressed Optimisation

• $12 \pm 6/7 \pm 4 \quad B_s^0 \rightarrow K_s^0 K^+ K^-$ signal events seen in the long/downstream reconstruction category.

• Still only 2.5 σ significance for $B_s^0 \rightarrow K_s^0 K^+ K^-$!

• Using world average value of $\mathcal{B}(B^0 \rightarrow K_{\rm S}^0 \pi^+ \pi^-) = 4.96 \pm 0.20 \times 10^{-6}$ with previous LHCb result omitted

Updated Branching Fraction Results (val \pm stat \pm syst $\pm \sigma(\mathcal{B}(K_s^0\pi^+\pi^-))$)

$$\begin{split} &\mathcal{B}(B^0 \!\rightarrow\! K^0_{\rm S} K^{\pm} \pi^{\mp}) \!= (6.1 \pm 0.5 \pm 0.7 \pm 0.3) \times 10^{-6} \\ &\mathcal{B}(B^0 \!\rightarrow\! K^0_{\rm S} K^+ K^-) \!= (27.2 \pm 0.9 \pm 1.6 \pm 1.1) \times 10^{-6} \\ &\mathcal{B}(B^0_{\rm S} \!\rightarrow\! K^0_{\rm S} \pi^+ \pi^-) \!= (9.5 \pm 1.3 \pm 1.5 \pm 0.4) \times 10^{-6} \\ &\mathcal{B}(B^0_{\rm S} \!\rightarrow\! K^0_{\rm S} K^{\pm} \pi^{\mp}) \!= (84.3 \pm 3.5 \pm 7.4 \pm 3.4) \times 10^{-6} \\ &\mathcal{B}(B^0_{\rm S} \!\rightarrow\! K^0 K^+ K^-) \in [0.4 - 2.5] \times 10^{-6}; \text{ at } 90\% \text{ C.L} \end{split}$$

- Precision improved but still consistent with previous LHCb results. [JHEP 10 (2013) 143]
- $B_s^0 \rightarrow K_s^0 K^+ K^-$ still not observed have to wait for inclusion of LHC Run II data.
- Work underway to perform Dalitz-plot analyses of dominant decay modes $B^0 \rightarrow K^0_{s} \pi^+ \pi^-$, $B^0_s \rightarrow K^0_{s} K^{\pm} \pi^{\mp}$ and $B^0 \rightarrow K^0_{s} K^+ K^-$.

Search for the decay $B_s^0 \rightarrow p\overline{\Lambda}K^-$

[arxiv:1704.07908]

<u>Tim Williams</u> (Birmingham) Charmless hadronic beauty decays at LHCb

30/06/2017 14 / 43

- Inclusive branching fraction to baryonic final states \sim 7% of total B width!
 - Most decay modes still unobserved/unstudied
- Baryonic decay of B_s^0 meson never previously observed.
- $\mathcal{B}(Multi-body baryonic B decays) > \mathcal{B}(two-body baryonic B decays)$
- $\mathcal{B}(B^0_s \rightarrow p\overline{\Lambda}K^-)$ predicted to be $\mathcal{O}(10^{-6})$.
- Perform blind search for $B_s^0 \rightarrow p\overline{\Lambda}K^-$ using 3 fb⁻¹ Run I dataset.
 - Optimise selection on MC, Data not viewed until selection and mass fit frozen.
- Threshold enhancement in baryon-antibaryon system observed in other decays [Eur. Phys. J. C74 (2014) 3026].

Analysis Strategy & Selection

Strategy

- Measure $\mathcal{B}(B^0_s \to p\overline{\Lambda}K^-) + \mathcal{B}(\bar{B^0_s} \to p\overline{\Lambda}K^-)$ because of identical final states.
- Topologically very similar decay $B^0 \rightarrow p \overline{\Lambda} \pi^-$ used as normalisation channel.

$$\mathcal{B}(B^{0}_{s} \to p\overline{\Lambda}K^{-}) + \mathcal{B}(B^{0}_{s} \to p\overline{\Lambda}K^{-}) = \frac{f_{d}}{f_{s}} \frac{\mathcal{N}(B^{0}_{s} \to p\overline{\Lambda}K^{-})}{\mathcal{N}(B^{0} \to p\overline{\Lambda}\pi^{-})} \frac{\varepsilon_{B^{0} \to p\overline{\Lambda}\pi^{-}}}{\varepsilon_{B^{0}_{s} \to p\overline{\Lambda}K^{-}}} \mathcal{B}(B^{0} \to p\overline{\Lambda}\pi^{-})$$

- Yield of control channel and ratio of branching fractions determined with simultaneous fit to all data samples.
 - Ratio of efficiencies included as Gaussian constraint.

Selection

• MLP classifier used to remove combinatorial background and PID requirements on p and K^-/π^- to remove mis-ID background.

Mass Fits

Fit Results

• $N(B^0 \rightarrow p\overline{\Lambda}\pi^-) = 519 \pm 28$

• $N(B_s^0 \rightarrow p\overline{\Lambda}K^-) = 234 \pm 29$, significance $> 15\sigma$, first observation!

•
$$\mathcal{B}(B^0_s \to p\overline{\Lambda}K^-) + \mathcal{B}(\overline{B^0_s} \to p\overline{\Lambda}K^-) =$$

 $\left[5.46 \pm 0.61 \pm 0.57 \pm 0.50(\mathcal{B}) \pm 0.32(\frac{f_s}{f_d}) \right] \times 10^{-6}$

• Normalised, background subtracted and efficiency corrected $M(p \overline{A})$ distributions shown.

• Clear threshold enhancement can be seen.

Search for $B^0_{(s)} \rightarrow p\overline{p}h^+h^-$ decays

[arXiv:1704.08497]

- No four body charmless baryonic B_s^0 decay has been observed.
- Search performed for B⁰_(s)→pph⁺h⁻ (h=K or π) decays using 3 fb⁻¹ data from LHCb Run I.
 - m($p \ \overline{p}$) <2.85 GeV and Λ_c^+ and D^0 resonances vetoed.
- $B^0 \rightarrow (J/\psi \rightarrow p\overline{p})(K^{*0} \rightarrow K^+\pi^-)$ used as normalisation channel.
- BDT used to reduce combinatorial background and particle identification requirements remove mis-ID background.
- Simultaneous fit to invariant mass of 3 final states used to extract signal yields (M(p p̄ K π), M(p p̄ K K), M(p p̄ π π)).
- 3D Fit to $M(p \ \overline{p} \ K \ \pi)$, $M(p \ \overline{p})$ and $M(K \ \pi)$ used to extract normalisation yield.

Signal Channel Fit Results

Charmless hadronic beauty decays at LHCb

Tim Williams (Birmingham)

Results

Significance/ σ	Branching Fraction/ 10^{-6}
4.1	$0.113 \pm 0.028 \pm 0.011 \pm 0.008$
> 25	$5.9 \pm 0.3 \pm 0.3 \pm 0.4$
> 25	$2.7 \pm 0.1 \pm 0.1 \pm 0.2$
> 25	$4.2 \pm 0.3 \pm 0.2 \pm 0.3 \pm 0.3$
6.5	$1.3 \pm 0.21 \pm 0.11 \pm 0.09 \pm 0.08$
2.6	< 0.66 at 90% CL
	Significance/ σ 4.1 > 25 > 25 > 25 6.5 2.6

- Results presented as $val \pm stat \pm sys \pm \sigma(norm\mathcal{B}) \pm \sigma(\frac{f_S}{f_d})$
- Limit set on $B_s^0 \rightarrow p\overline{p}\pi^+\pi^-$ by integrating likelihood in physical region.

$M(h^+h^-)$ Substructures

- Normalised background subtracted and efficiency corrected $M(h^+h^-)$ distributions shown.
- Vector mesons, ϕ , ρ^0 , K^{*0} clearly present

Threshold enhancement in $M(p \ \overline{p})$

[arXiv:1704.08497]

- Normalised background subtracted and efficiency corrected $M(p\overline{p})$ distributions shown.
- Clear threshold enhancement

Search for the decay $B_s^0 \rightarrow \phi \eta'$

[JHEP 05 (2017) 158]

<u>Tim Williams</u> (Birmingham) Charmless hadronic beauty decays at LHCb

[JHEP 05 (2017) 158]

• $B_s^0 \rightarrow \phi \eta'$ proceeds predominantly through a $b \rightarrow s$ gluonic penguin diagram.

- Sensitive to phase ϕ_s but yet to be observed.
- Wide range of theory predictions and large uncertainties partly due to limited knowledge of B⁰_s→φ form factors

Theory Approach	$\mathcal{B}(10^{-6})$	Reference
QCD Factorisation	$0.05\substack{+1.18 \\ -0.19}$	[Nucl.Phys. B 675 (2003) 333-415]
QCD Factorisation	$2.2^{+9.4}_{-3.1}$	[arXiv:hep-ph/0701146]
Perturbative QCD	$0.19\substack{+0.20 \\ -0.13}$	[Phys.Rev. D 76 (2007) 074018]
Perturbative QCD	$20.0^{+16.3}_{-9.1}$	[Phys.Rev. D 80 (2009) 114026]
SCET	$4.3^{+5.2}_{-3.6}$	[Phys.Rev. D 78 (2008) 034011]
SU(3) flav. symm	5.5 ± 1.8	[Phys.Rev.D 91 (2014) 014011]
FAT	13.0 ± 1.6	[Eur. Phys. $J_{\Box} C (2017) = 77: 125.$]

<u>Tim Williams</u> (Birmingham)	Charmless hadronic beauty decays at LHCb	30/06/2017 26 / 43
----------------------------------	--	--------------------

- Blind search performed using full LHCb Run I data set.
- $B^+ \rightarrow K^+ \eta'$ used as normalisation channel high yield, minimal background and precisely known $\mathcal{B}(B^+ \rightarrow K^+ \eta') = (70.6 \pm 2.5) \times 10^{-6}$
- η' reconstructed in decay $\eta'{\rightarrow}\pi^+\pi^-\gamma~$ and ϕ reconstructed in decay $\phi{\rightarrow}{\cal K}^+{\cal K}^-.$
- Optimise similar selection for signal and control channel:
 - Multivariate classifier (BDT) with 9 variables used to reject majority of background
 - Particle identification requirements on both hadrons and photons.
- 2D($M_{\eta'K^+(K^-)}, M_{\pi^+\pi^-\gamma}$) simultaneous fit to both $B_s^0 \rightarrow \phi \eta'$ and $B^+ \rightarrow K^+ \eta'$ to extract yields

伺 ト イヨト イヨト ヨヨ のくら

• Fit Components: Signal $B_s^0 \rightarrow \phi(\phi \rightarrow \pi^+ \pi^- \pi^0)$ background Combinatorial background with true Control Channel n'Combinatorial background without true η'

Signal Channel

• Small bias correction due to $B_s^0 \rightarrow \phi(\phi \rightarrow \pi^+ \pi^- \pi^0)$ component (1.3 ± 0.7) events.

Fit Results

•
$$\mathcal{N}(B^0_s \to \phi \eta') = -1.9^{+5.0}_{-3.8}(stat) \pm 1.1(syst)$$

•
$$\frac{\mathcal{N}(B_s^0 o \phi \eta')}{\mathcal{N}(B^+ o K^+ \eta')} = (-1.73^{+4.54}_{-3.45}(stat) \pm 0.99(syst)) \times 10^{-4}$$

• Upper limit set on branching fraction using bayesian method with uniform prior.

Branching Fraction Limit

$${\cal B}(B^0_s{ o}\phi\eta') < 0.82(1.01) imes 10^{-6}$$
 at 90%(95%) CL

ELE NOR

Theory Approach	$\mathcal{B}(10^{-6})$	Reference
QCD Factorisation	$0.05^{+1.18}_{-0.19}$	[Nucl.Phys. B 675 (2003) 333-415]
QCD Factorisation	$2.2^{+9.4}_{-3.1}$	[arXiv:hep-ph/0701146]
Perturbative QCD	$0.19\substack{+0.20\\-0.13}$	[Phys.Rev. D 76 (2007) 074018]
	$a_{0} a_{+163}$	
Perturbative QCD	$20.0_{-9.1}$	[Phys.Rev. D 80 (2009) 114020]
CCET	4 a+5.2	[DL D D 70 (0000) 024011]
SCET	4.3-3.6	[Filys. Nev. D 76 (2006) 034011]
CI1(2) (I	F F 1 0	[DLD_0] (0014) 014011]
- SO(S) nav. symm	0.0 ± 1.0	[Filys. Rev. D 91 (2014) 014011]
	13.0 ± 1.6	[Eur Phys. J. C (2017) 77: 125]
	13.0 ± 1.0	[Eur. 1 hys. 5. C (2011) 11. 125.]

• 4 out of 7 presented theory predictions are ruled out at 95% confidence level!

Search for $\Xi_b^-, \Omega_b^- \rightarrow ph^-h'^-$ decays

[Phys. Rev. Lett. 118 (2017) 071801]

- The decay of a \varXi_b^- or \varOmega_b^- to a charmless final state has never been observed.
- Interference between CKM suppressed tree and loop diagrams may lead to CP-violation effects.

• First search for these decays performed using 3 fb^{-1} LHCb Run I data.

・ロン ・聞と ・ ほと ・ ほと

Selection

- Neural network used to separate signal and combinatorial background
- Tight Particle-ID requirement on proton to remove background from $B^- \rightarrow K^- h^- h'^-$ decays.
- Pion and Kaon Particle-ID requirements optimised and chosen to ensure each candidate is only assigned to one of three possible final states ($p \ K^- \ K^-$, $p \ K^- \ \pi^-$, $p \ \pi^- \ \pi^-$).

Fit Strategy

- Fit performed to all three $p h^+ h'^-$ mass distributions simultaneously, constrain cross-feed between channels to expected rate.
- Separate fit to $B^- \rightarrow K^+ K^- K^-$ control channel.

ELE NOR

Mass Fits

• Ξ_b^-, Ω_b^- fragmentation fractions not measured, measure $\frac{f_{\Xi}}{f_d} \times B$

$$R_{phh'} = \frac{f_{\Xi}}{f_d} \times \frac{\mathcal{B}(\Xi_b^- \to ph^-h'^-)}{\mathcal{B}(B^- \to K^+K^-K^-)} = \frac{\mathcal{N}(\Xi_b^- \to ph^-h'^-)}{\mathcal{N}(B^- \to K^+K^-K^-)} \frac{\varepsilon(B^- \to K^+K^-K^-)}{\varepsilon(\Xi_b^- \to ph^-h'^-)}$$

- Efficiencies corrected for variation over phase-space.
- For channels with < 3σ significance, limit set by integrating likelihood in physical region, 90% confidence levels shown.

$R_{phh'}$ Results (10⁻⁵)

$R_{phh'}(\Xi_b^- \to pK^-K^-) = 265 \pm 35 \pm 47$	$R_{phh'}(\Omega_b^- \rightarrow pK^-K^-) < 18$
$R_{phh'}(\Xi_b^- \rightarrow pK^-\pi^-) = 259 \pm 64 \pm 49$	$R_{phh'}(\Omega_b^-p \ K^- \ \pi^-) < 51$
$R_{phh'}(arepsilon_b^-{ ightarrow} p\pi^-\pi^-){<}147$	$R_{phh'}(\Omega_b^- ightarrow p\pi^-\pi^-) < 109$

• No evidence for Ω_b^- decays, hierarchy of Ξ_b^- decays as expected.

 $M(pK^{-})$ Resonances in $\Xi_{b}^{-} \rightarrow pK^{-}K^{-}$ [Phys. Rev. Lett. 118 (2017) 071801]

• Background subtracted using sPlot method.

• Efficiency corrected $M(pK^-)_{min}$ distribution shows a rich resonant structure which appears to be consistent with known states such as the $\Lambda(1520)$, $\Lambda(1670)$ and $\Lambda(1690)$.

Search for CP Violation in $\Lambda_b^0 \rightarrow p \pi^- \pi^+ \pi^-$ decays

Nature Physics 13 (2017) 391

38 / 43

• 5σ evidence for CP violation in a *b*-baryon has never been observed.

- Cabibbo suppressed tree diagram(left) and loop diagram(right) have similar amplitudes-CPV could arise from the interference of the two amplitudes.
- LHCb looks to exploit copious Λ_b^0 production at the LHC, nearly 20% of all *b* hadrons produced.

- Study asymmetries in the \hat{T} operator unitary operator that reverses both momentum and spin three-vectors.
- Define scalar triple products:

$$C_{\hat{\mathcal{T}}}=ec{p}_{p}\cdot(ec{p}_{\pi^{-}} imesec{p}_{\pi^{+}}), \qquad ar{C}_{\hat{\mathcal{T}}}=ec{p}_{p}\cdot(ec{p}_{\pi^{+}} imesec{p}_{\pi^{-}})$$

• Define asymmetries as:

$$A_{\hat{T}}(C_{\hat{T}}) = \frac{N(C_{\hat{T}} > 0) - N(C_{\hat{T}} < 0)}{N(C_{\hat{T}} > 0) + N(C_{\hat{T}} < 0)}, \bar{A}_{\hat{T}}(\bar{C}_{\hat{T}}) = \frac{\bar{N}(-\bar{C}_{\hat{T}} > 0) - \bar{N}(-\bar{C}_{\hat{T}} < 0)}{\bar{N}(-\bar{C}_{\hat{T}} > 0) + \bar{N}(-\bar{C}_{\hat{T}} < 0)}$$

• where CPV and PV observables then defined as:

$$a_{CP}^{\hat{T}-odd} = rac{1}{2}(A_{\hat{T}} - \bar{A}_{\hat{T}}), a_{p}^{\hat{T}-odd} = rac{1}{2}(A_{\hat{T}} + \bar{A}_{\hat{T}})$$

• A significant deviation from zero in this observable would signal CPV.

Observation of $\Lambda_b^0 \rightarrow p \pi^- \pi^+ \pi^-$

- $\Lambda_b^0 \rightarrow p \pi^+ \pi^- \pi^+$ yet to be observed first step is to observe it!
- Selection makes use of BDT classifier and LHCb particle ID requirements.
- Signal yield extracted with unbinned extended maximum likelihood fit.

- Sample split into 4 categories according to Λ_b^0 or $\overline{\Lambda}_b^0$ and $C_{\hat{T}}$ or $\overline{C}_{\hat{T}}$ simultaneous extended maximum likelihood fit to extract asymmetries.
- CP asymmetries may vary over phase space of four body decay due to resonant contributions - phase-space integrated asymmetries could cancel.
- Measure $a_{CP}^{\hat{T}-odd}$ and $a_p^{\hat{T}-odd}$ in bins of phase-space two separate binning schemes used.
- Binning scheme A use two body invariant masses - designed to exploit strong resonant structure e.g Δ(1232)⁺⁺→ρπ⁺
- Binning scheme B use angle between $p\pi_{fast}^-$ and $\pi^+\pi_{slow}^-$ decay planes Φ - exploit interference of contributions.

- χ^2 test used to determine compatibility of each binning scheme with the null hypothesis of CP symmetry.
- p-values indicate 2.0 σ and 3.4 σ evidence for CP violation in binning schemes A and B respectively.
- Combined significance = 3.3σ obtained using permutation test. First evidence for CP-violation in a *b*-baryon decay!

Summary & Conclusions

- Wide and interesting range of charmless *b*-hadron decays are studied at LHCb.
- Stringent upper limit set on $\mathcal{B}(B_s^0 \rightarrow \phi \eta') < 0.82(1.01) \times 10^{-6}$ at 90%(95%) confidence level.
- First observation of the baryonic B_s^0 decay, $B_s^0 \rightarrow p\overline{\Lambda}K^-$.
- First observations of $B^0 \rightarrow p\overline{p}\pi^+\pi^-$, $B^0_s \rightarrow p\overline{p}K^+\pi^-$, $B^0_s \rightarrow p\overline{p}K^+K^-$ decays and strong evidence for $B^0 \rightarrow p\overline{p}K^+K^-$ decay.
- Updated branching fraction measurements for all $B^0_{d,s} \rightarrow K^0_{\rm S} h^{\pm} h^{'\mp}$ decays.
- 8.4 σ observation of $\Xi_b^- \rightarrow p K^- K^-$, no evidence seen for $\Omega_b^- \rightarrow p K^- K^-$
- 3.3σ evidence for CP violation seen in Λ⁰_b→pπ⁻π⁺π⁻, first evidence for CP violation in a b-baryon decay!

< 回 ト < 三 ト < 三 ト

Backup

-

・ロト ・ 日 ト ・ 田 ト ・

三日 のへで

Particle Identification

Tim Williams (Birmingham)

$B(10^{-6})$	Reference	Authors
QCD Factorisation	$0.05\substack{+1.18 \\ -0.19}$	M. Beneke, M. Neubert
QCD Factorisation	$2.2^{+9.4}_{-3.1}$	X. Chen, D. Guo, Z. Xiao
Perturbative QCD	$0.19\substack{+0.20 \\ -0.13}$	A. Ali, G. Kramer, Y. Li,
		C. Lu, Y. Shen, W. Wang, Y. Wang
Perturbative QCD	$20.0^{+16.3}_{-9.1}$	H. Cheng, C. Chua
SCET	$4.3^{+5.2}_{-3.6}$	W. Wang, Y. Wang, D. Yang, C. Lu
SU(3) flav. symm	5.5 ± 1.8	H. Cheng, C. Chiang, A. Kuo
FAT	13.0 ± 1.6	S. Zhou, Q. Zhang, W. Lyu,C. Lü

1= 9QC

・ロト ・ 日 ト ・ 日 ト ・

Observation of annhilation mode decay $B^0 \rightarrow K^+ K^-$

[Phys. Rev. Lett. 118, 081801]

• Large uncertainties still remain on the theoretical predictions of branching fractions for decays that are dominated by weak annihilation transitions, e.g $B^0 \rightarrow K^+ K^-$ and $B_s^0 \rightarrow \pi^+ \pi^-$

- Measurement of $B^0 \rightarrow K^+ K^-$ and $B^0_s \rightarrow \pi^+ \pi^-$ branching fractions provide vital input to understanding these decays.
- The decay $B_s^0 \rightarrow \pi^+\pi^-$ was observed for the first time by LHCb using fraction of Run I dataset. $\mathcal{B}(B_s^0 \rightarrow \pi^+\pi^-) = (0.95^{+0.21}_{-0.17} \pm 0.13) \times 10^{-6}$.
- No evidence previously existed for the decay $B^0 \rightarrow K^+ K^-$.

Strategy & Selection

Analysis Strategy

- Perform search for $B^0 \rightarrow K^+ K^-$ and improve measurement of $B^0_s \rightarrow \pi^+ \pi^-$ using full Run I LHCb dataset.
- Well known decay $B^0 \rightarrow K^+ \pi^-$ used as control channel for both signal channels.
- Extract signal yields by fitting K^+ K^- and π^+ π^- final states simultaneously and constraining mis-ID crossfeed.

Selection

- LHCb PID system used to separate data into mutually exclusive subsamples corresponding to K^+ π^- , π^+ π^- and K^+ K^- final states.
- BDT classifier used to reduce combinatorial background.
- Two separate optimisations of BDT output and PID requirements for K^+ K^- and π^+ π^- final states, selections denoted $S_{K^+K^-}$ and $S_{\pi^+\pi^-}$.

Mass Fit Results

Branching Fraction Results

- First observation of $B^0 \rightarrow K^+ K^-$!
- Branching Fraction calculated as:

$$\frac{\mathcal{B}(B^0_x \to h^+ h^-)}{\mathcal{B}(B^0 \to K^+ \pi^-)} = \frac{\mathcal{N}(B^0_x \to h^+ h^-)}{\mathcal{N}(B^0 \to K^+ \pi^-)} \frac{\varepsilon(B^0 \to K^+ \pi^-)}{\varepsilon(B^0_x \to h^+ h^-)} \frac{f_d}{f_x}$$

Branching Fraction Results

- $\mathcal{B}(B^0 \rightarrow K^+ K^-) = (7.80 \pm 1.27 \pm 0.81 \pm 0.21) \times 10^{-8}$
- $\mathcal{B}(B^0 \rightarrow \pi^+\pi^-) = (6.91 \pm 0.54 \pm 0.63 \pm 0.19 \pm 0.40) \times 10^{-7}$
- Results presented as $val \pm stat \pm sys \pm \sigma(norm\mathcal{B}) \pm \sigma(\frac{f_{S}}{f_{d}})$