Introduction	LO calculations	NLO calculations	Summary	Backups	References

Next-to-leading order QCD corrections to paired B_c production in e^+e^- annihilation. The XXIII International Workshop High Energy Physics and Quantum Field Theory

¹<u>A. Berezhnoy</u>, ²A. Likhoded, ^{1,3,4}A. Onishchenko, ²S. Poslavsky

¹SINP MSU, ²IHEP, ³JINR, ⁴MIPT

29.06.2017, Yaroslavl, Russia

It allows to check:

- perturbative QCD;
- DPS (double parton scattering);
- hadronization models for doubly heavy systems (color octet vs color singlet, internal motion of quarks inside quarkonium);
- k_T factorization model (virtual initial gluons)

Introduction LO calculations NLO calculations Summary Backups References

Some experimental data from LHCb

- hadronic B_c production (it looks like LO pQCD underestimates cross-section up to several times);
- double charm production (full cross-section is in good agreement with DPS, p_T distributions are in disagreement with DPS) [Aaij et al.(2012b)];
- $J/\psi + c\bar{c}$ (full cross-section is in good agreement with DPS, p_T distributions are in disagreement with DPS) [Aaij et al.(2012b)];
- paired J/ψ production (SPS +CS?)[Aaij et al.(2012a)].
- $\Upsilon + c\bar{c}$ (full cross-section is in good agreement with DPS).

To separate DPS and SPS contributions we need loop corrections to SPS.

・ロット 本語 ア・イヨット キョー

 Introduction
 LO calculations
 NLO calculations
 Summary
 Backups
 References

 Begin with simple NLO problems
 Summary
 Summar

$$e^{+}e^{-} \xrightarrow{\gamma} J/\psi \eta_{c}$$

$$e^{+}e^{-} \xrightarrow{\gamma, Z_{0}} J/\psi \eta_{c}$$

$$e^{+}e^{-} \xrightarrow{\gamma} B_{c}^{(*)} B_{c}^{(*)}$$

$$e^{+}e^{-} \xrightarrow{\gamma, Z_{0}} B_{c}^{(*)} B_{c}^{(*)}$$

- Not too large number of diagrams
- Absence of infrared divergences (no gluon radiation)
- First process is already calculated at LO and NLO, there is a possibility for checks [Feng(2014)].
- Third process is known at LO [Kiselev(1995)].

$$A^{SJj_{z}} = \int T^{Ss_{z}}_{b\bar{b}c\bar{c}}(p_{i}, k(\vec{q})) \cdot \left(\Psi^{Ll_{z}}_{\bar{b}c}(\vec{q})\right)^{*} \cdot C^{Jj_{z}}_{s_{z}l_{z}} \frac{d^{3}\vec{q}}{(2\pi)^{3}}$$

J and j_z — total meson angular momentum and its projection on z axis in B_c rest frame L and l_z — orbital angular momentum and its projection S in s_z — spin and its projection on the same axis $C_{s_z l_z}^{J_{j_z}}$ — Clebsch-Gordon coefficients p_i — momenta of B_c - meson and $b, \, \bar{c} \,$ quarks \vec{q} — 3d momentum of \bar{b} -quark in the rest frame of B_c -meson, $(0, \vec{q}) \rightarrow k(\vec{q})$

$$A \sim \int d^3 q \, \Psi^*(\vec{q}) \left\{ T(p_i, \vec{q}) \Big|_{\vec{q}=0} + \vec{q} \frac{\partial}{\partial \vec{q}} T(p_i, \vec{q}) \Big|_{\vec{q}=0} + \cdots \right\}$$

For S-wave state:

$$A \sim R_s(0) \cdot T_{b\bar{b}c\bar{c}}(p_i)\big|_{\vec{q}=0}$$

Introduction	LO calculations	NLO calculations	Summary	Backups	References
Approxim	nation used				

$$v_{\bar{b}_i}\bar{u}_{c_j} \qquad \Longrightarrow \qquad \left(\frac{\frac{m_b}{M}\hat{P}_{B_c} - m_b}{2m_b}\right)\left[\,\gamma^5 \text{ or } \hat{\epsilon}\,\right]\left(\frac{\frac{m_c}{M}\hat{P}_{B_c} + m_c}{2m_c}\right) \cdot \frac{\delta_{ij}}{\sqrt{3}}$$

- Color singlet.
- Relative velocity of quark motion inside quarkonium is neglected (heavy quark velocities are equal).
- At NLO we first put relative quark velocity to zero and then take integrals and perform renormalization.

Diagrams: FeynArts [Hahn(2001)]

Amplitudes: Form [Kuipers et al.(2013)Kuipers, Ueda, Vermaseren, and Vollinga], FeynCalc [Shtabovenko et al.(2016)Shtabovenko, Mertig, and Orellana], Redberry [Poslavsky and Bolotin(2015)]

LO cross-sections for $e^+e^- \xrightarrow{\gamma} B_c^{(*)}B_c^{(*)}$ production

$$r=\frac{m_c}{m_c+m_b},\qquad m=m_c+m_b,\qquad \tilde{s}=s/m^2$$

$$\sigma(B_c B_c) = \frac{64\pi\alpha^2 \alpha_s^2 R_S^4(\tilde{s}-4)^{3/2} \left(-3r^4(\tilde{s}+2) + r^3(5\tilde{s}+8) - 3r^2(\tilde{s}+4) + r(\tilde{s}+8) - 2\right)^2}{243m^8(r-1)^6 r^6 \tilde{s}^{13/2}}$$

$$\sigma(B_c B_c^*) = \frac{128\pi\alpha^2 \alpha_s^2 \left(-3r^3 + 3r^2 - 3r + 1\right)^2 R_S^4 (\tilde{s} - 4)^{3/2}}{243m^8 (r - 1)^6 r^6 \tilde{s}^{11/2}}$$

$$\begin{split} \sigma(B_c^*B_c^*) &= \frac{64\pi\alpha^2\alpha_s^2R_s^4(\tilde{s}-4)^{3/2}}{243m^8(r-1)^6r^6\tilde{s}^{13/2}} \Big(9r^8(\tilde{s}^2-4\tilde{s}+12)-6r^7(5\tilde{s}^2-18\tilde{s}+48)+r^6(43\tilde{s}^2-184\tilde{s}+624)\\ &\quad -36r^5(\tilde{s}^2-7\tilde{s}+24)+r^4(19\tilde{s}^2-168s+888)\\ &\quad +r^3(-6\tilde{s}^2+28\tilde{s}-672)+r^2(\tilde{s}^2+32\tilde{s}+336)-4r(5\tilde{s}+24)+4(\tilde{s}+3)\Big) \end{split}$$

See also [Kiselev(1995)]

ps Ret

References

NLO diagrams for $\gamma \rightarrow B_c^{(*)} B_c^{(*)}$

Renormalization scheme

On-shell scheme used:

$$\begin{split} Z_m^{OS} &= 1 - \frac{3g_s^2}{16\pi^2} C_F C_\epsilon \left[\frac{1}{\epsilon_{UV}} + \frac{4}{3} \right] \\ Z_2^{OS} &= 1 - \frac{g_s^2}{16\pi^2} C_F C_\epsilon \left[\frac{1}{\epsilon_{UV}} + \frac{2}{\epsilon_{IR}} + 4 \right] \\ Z_g^{\overline{MS}} &= 1 + \frac{g_s^2}{16\pi^2} \left(-\frac{11}{6} C_A + \frac{1}{3} n_f \right) \left[\frac{1}{\epsilon_{UV}} - \gamma_E + \ln(4\pi) \right] \\ C_F &= \frac{N_c^2 - 1}{2N_c}, C_A = N_c, C_\epsilon = \left(\frac{4\pi\mu^2}{m^2} e^{-\gamma_E} \right)^\epsilon \end{split}$$

m is the heavy quark pole mass n_f is a number of fermions taken into account in gluon self-energies γ_E is Euler's gamma constant

γ^5 prescription:

West prescription [West(1993)] or Larin prescription [Larin(1993)]

The calculations were done within several workflows:

- FeynArts \rightarrow FeynCalc (\rightarrow FeynCalcFormLink) \rightarrow Apart \rightarrow FIRE \rightarrow Package-X;
- FeynArts \rightarrow Redberry \rightarrow Apart \rightarrow FIRE \rightarrow Package-X;
- FeynArts → FORM → prototyping and simplification within the original framework → FIRE → Package-X.

All applied methods lead to same results.

Energy dependence

12/20

 $\sqrt{s} = 20 \text{ GeV}$ $\sqrt{s}/2 \le \mu \le 2\sqrt{s}$

Introduction	LO calculations	NLO calculations	Summary	Backups	References
Summary					

- Computed NLO cross-section for paired B_c -meson production in e^+e^- -annihilation using several different techniques.
- One-loop corrections are sizable at all energies.
- The dependence on the renormalization scale μ stabilizes with the account of NLO corrections.
- Developed code will be used to calculate cross-sections for other processes of multiple heavy quark production at NLO.
- The results are published in Nucl.Phys.B [Berezhnoy et al.(2017)Berezhnoy, Likhoded, Onishchenko, and Poslavsky].

Introduction	LO calculations	NLO calculations	Summary	Backups	References

Thank you for attention!

Introduction LO calculations NLO calculations Summary Backups References

Backup slides

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Summary

Dimensional regularization of NLO amplitudes

- $D = 4 2\epsilon$
- $\overline{\mathrm{MS}}$ scheme: $\frac{1}{\epsilon} \gamma_E + \log(4\pi)$
- $\{\gamma^{\mu}, \gamma^{\nu}\} = 0$ $g^{\mu\nu}g_{\mu\nu} = D$ ['t Hooft and Veltman(1972)]

 γ^5 problem equalities $\{\gamma^5, \gamma^{\mu}\}$

For $D \neq 4$ equalities $\{\gamma^5, \gamma^\mu\} = 0$ and $\operatorname{Tr}\{\gamma^5 \gamma^\mu \gamma^\nu \gamma^\rho \gamma^\sigma\} \neq 0$ cannot be simultaneously satisfied. We have used to prescriptions for γ^5 .

West (applied within Feyncalc, Feyncalc+Formlink, Form):

$$\operatorname{Tr}\{\gamma^{5}\gamma^{\alpha_{1}}\dots\gamma^{\alpha_{n}}\} = \frac{2}{n-4} \sum_{i=2}^{n} \sum_{j=1}^{i-1} (-1)^{i+j+1} g_{\alpha_{i}\alpha_{j}} \operatorname{Tr}\{\gamma^{5} \prod_{\substack{k=1\\k\neq i,j}}^{n} \gamma^{\alpha_{k}}\} \ (n>4)$$

Larin scheme (applied within RedBerry [Poslavsky and Bolotin(2015)] or FeynCalc): γ^5 anticommute to the right $\gamma^5\gamma^{\mu} \rightarrow -\frac{i}{6}\varepsilon_{\mu\alpha\beta\sigma}\gamma^{\alpha}\gamma^{\beta}\gamma^{\sigma}$

- Passarino-Veltman reduction procedure (removing k^μ and k^με_{μ...}) [Passarino and Veltman(1979),
 't Hooft and Veltman(1979)]: realized within FeynCalc and within the original framework.
- simplification of the integrals: within FeynCalc + \$Apart [Feng(2012), Feng(2014)]; or prototyping and a simplification within the original framework.
- reduction to master integrals: FIRE [Smirnov and Smirnov(2013)].
- the analytical expressions for master integrals: Package-X [Patel(2015)].

Introduction LO calculations NLO calculations Summary Backups References $\mathsf{Coefficients} \sim 1/(4-D)$

After FIRE in the amplitude $\gamma \rightarrow B_c^* B_c$ we obtain the term

$$\begin{split} &-\frac{1}{3m^5(r-1)^5r^5(s-4)s^3(4-D)}4ie(s-2)C_Fg_s^4\epsilon^{\gamma\varepsilon(B_c^*)p(B_c^*)p(B_c)}\\ &(r(m^2(r-1)((r-1)^3(r^2(s-4)-r(s-4)-1)B_0(m^2(r^2(-(s-4))+r(s-4)+1);mr,m-mrt))\\ &+(5r^3-3r^2+3r-1)(r^2(s-4)-r(s-4)-1)B_0(m^2(r^2(-(s-4))+r(s-4)+1);m-mr,mr))\\ &-r(3r^4-6r^3+6r^2-4r+1)s(B_0(m^2r^2s;mr,mr)+B_0(m^2(r-1)^2s;m-mr,m-mr)))\\ &+2(6r^4-9r^3+9r^2-5r+1)A_0(m-mr))+2(6r^5-15r^4+18r^3-14r^2+6r-1)A_0(mr)) \end{split}$$

$$A_0(m) \sim \int \frac{dk}{k^2 - m^2} \qquad B_0(p^2; m_1, m_2) \sim \int \frac{dk}{(k^2 - m_1^2)((k + p)^2 - m_2^2)}$$

Expansion of A_0 and B_0 up to O(1) (as in package-X) is not enough! We used the expansion of A_0 and B_0 up to $O(\epsilon)$ derived from [Davydychev and Kalmykov(2001)]. Introduction LO calculations NLO calculations Summary Backups **References**

References

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

R. Aaij et al.

Observation of J/ψ pair production in pp collisions at $\sqrt{s} = 7TeV$. Phys.Lett., B707:52-59, 2012a. doi: 10.1016/j.physletb.2011.12.015.

R Aaij et al.

Observation of double charm production involving open charm in pp collisions at \sqrt{s} = 7 TeV.

JHEP, 1206:141, 2012b.

doi: 10.1007/JHEP03(2014)108, 10.1007/JHEP06(2012)141.

A. V. Berezhnoy, A. K. Likhoded, A. I. Onishchenko, and S. V. Poslavsky.

Next-to-leading order QCD corrections to paired B_c production in e^+e^- annihilation.

Nucl. Phys., B915:224-242, 2017.

doi: 10.1016/j.nuclphysb.2016.12.013.

Andrei I. Davydychev and M. Yu. Kalmykov. New results for the epsilon expansion of certain one, two and three loop Feynman diagrams.

Nucl. Phys., B605:266-318, 2001.

doi: 10.1016/S0550-3213(01)00095-5.

Feng Feng.

Apart: A Generalized Mathematica Apart Function.

Comput. Phys. Commun., 183:2158-2164, 2012. doi: 10.1016/j.cpc.2012.03.025.

Feng Feng.

Automated One-loop Computation in Quarkonium Process within NRQCD Framework.

J. Phys. Conf. Ser., 523:012041, 2014.

doi: 10.1088/1742-6596/523/1/012041.

Thomas Hahn.

Generating Feynman diagrams and amplitudes with FeynArts 3. Comput. Phys. Commun., 140:418–431, 2001. doi: 10.1016/S0010-4655(01)00290-9.

V. V. Kiselev.

Exclusive production of heavy meson pairs in e+ e- annihilation. *Int. J. Mod. Phys.*, A10:465-476, 1995. doi: 10.1142/S0217751X95000206.

References

J. Kuipers, T. Ueda, J. A. M. Vermaseren, and J. Vollinga.

FORM version 4.0.

Comput. Phys. Commun., 184:1453-1467, 2013. doi: 10.1016/j.cpc.2012.12.028.

S. A. Larin.

The Renormalization of the axial anomaly in dimensional regularization. Phys. Lett., B303:113-118, 1993. doi: 10.1016/0370-2693(93)90053-K.

G. Passarino and M. J. G. Veltman.

One Loop Corrections for e+ e- Annihilation Into mu+ mu- in the Weinberg Model.

Nucl. Phys., B160:151, 1979. doi: 10.1016/0550-3213(79)90234-7.

Hiren H. Patel.

Package-X: A Mathematica package for the analytic calculation of one-loop integrals.

Comput. Phys. Commun., 197:276-290, 2015. doi: 10.1016/j.cpc.2015.08.017.

Redberry: a computer algebra system designed for tensor manipulation. *J. Phys. Conf. Ser.*, 608(1):012060, 2015. doi: 10.1088/1742-6596/608/1/012060.

Vladyslav Shtabovenko, Rolf Mertig, and Frederik Orellana. New Developments in FeynCalc 9.0. 2016

📄 A. V. Smirnov and V. A. Smirnov.

FIRE4, LiteRed and accompanying tools to solve integration by parts relations.

Comput. Phys. Commun., 184:2820-2827, 2013. doi: 10.1016/j.cpc.2013.06.016.

Gerard 't Hooft and M. J. G. Veltman.

Regularization and Renormalization of Gauge Fields.

Nucl. Phys., B44:189–213, 1972. doi: 10.1016/0550-3213(72)90279-9.

Gerard 't Hooft and M. J. G. Veltman.

Scalar One Loop Integrals.

Nucl. Phys., B153:365-401, 1979. doi: 10.1016/0550-3213(79)90605-9.

Todd H. West.

FeynmanParameter and Trace: Programs for expressing Feynman amplitudes as integrals over Feynman parameters.

Comput. Phys. Commun., 77:286–298, 1993. doi: 10.1016/0010-4655(93)90011-Z.