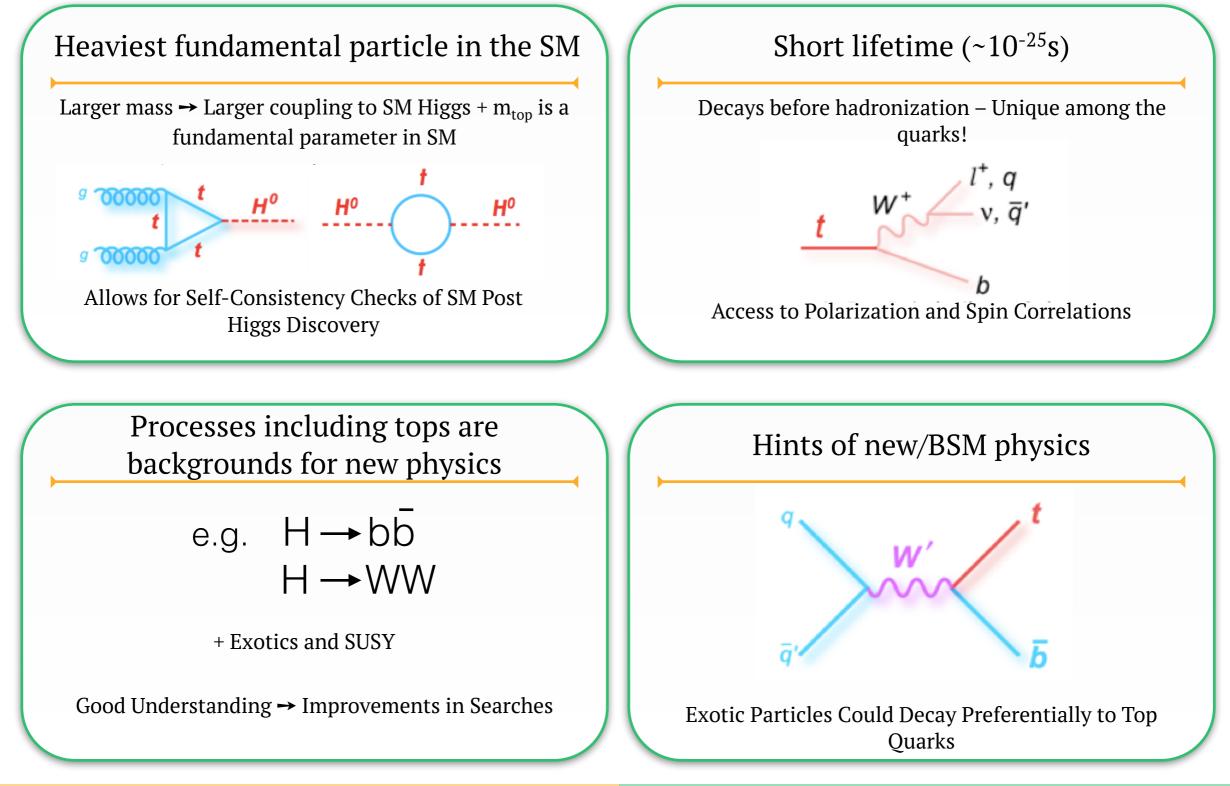


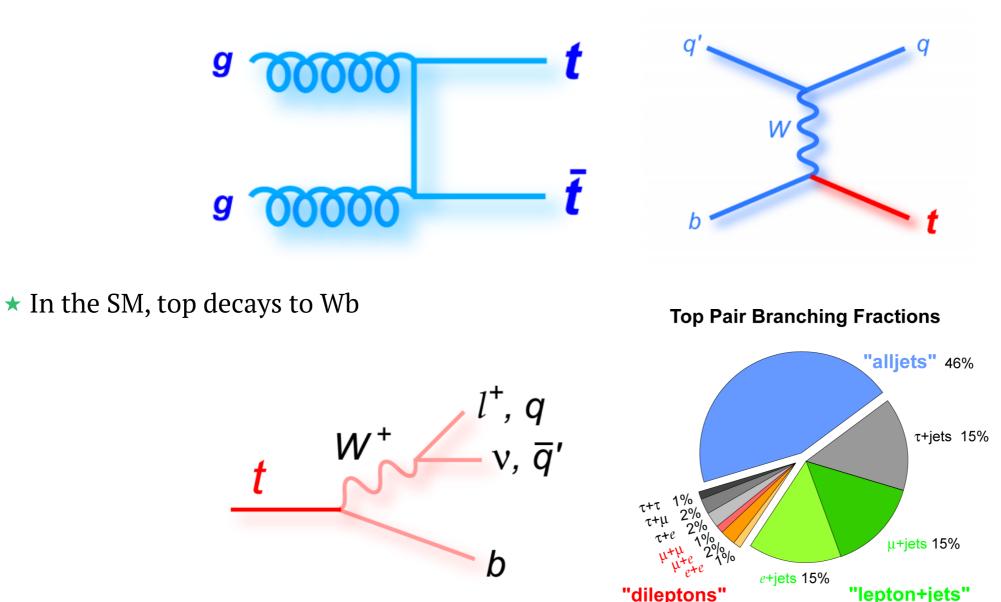
Highlights of top quark properties measurements at ATLAS

XXIII International Workshop QFTHEP

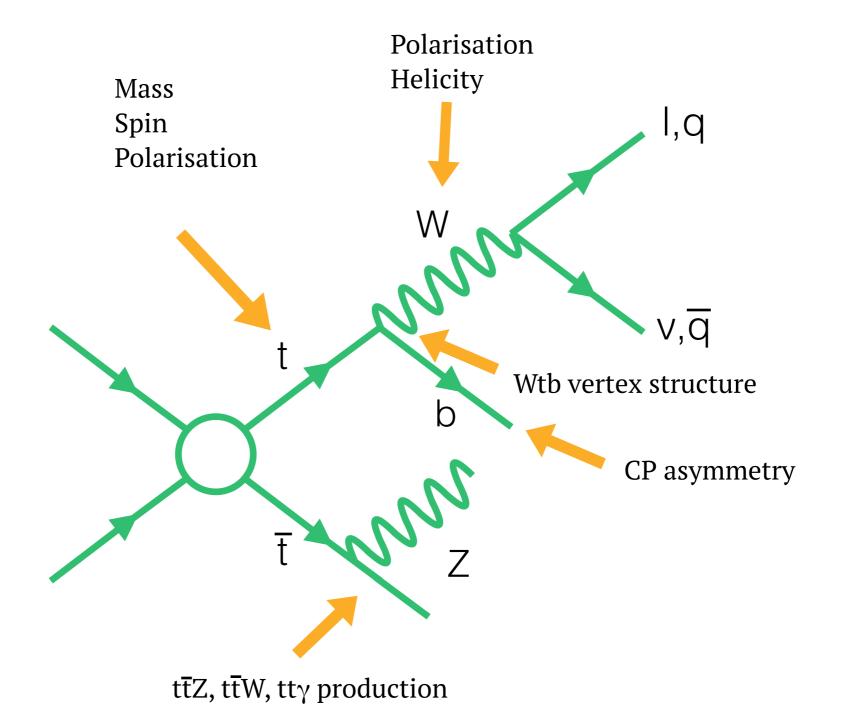


Laura Barranco Navarro on behalf of the ATLAS Collaboration

Yaroslavl, Russia 29/06/2017



What makes top quark interesting?



Top production and decay

- * In *pp* collisions top production is dominated by QCD production in top and anti-top pairs.
- ★ EW production provides direct access to Wtb vertex

Topics covered in this talk

Topics covered in this talk

Top mass

<u>arXiv:1702.07546</u> <u>Phys.Lett. B 761 (2016) 350</u>

<u>JHEP 03 (2017) 113</u>

Top spin

Wtb vertex structure

W polarisation

CP asymmetries

tTX production

JHEP 04 (2017)124

Eur.Phys.J. C (2017)77:264

JHEP 02 (2017) 071

Eur.Phys.J. C (2017)77:40 arXiv:1706.03046

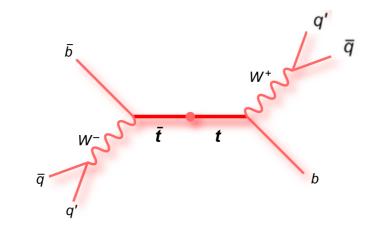
Top quark mass

- ★ Motivations
 - EW precision calculations depend on m_t
 - EW vacuum stability involve m_t
 - m_t is large \rightarrow connection with high energy theories
 - Unique opportunity to study a (almost) bare quark
- * Methods: Confinement \rightarrow quark masses are not observables \rightarrow what is m_t ?
 - Top decay products invariant mass m_t^{MC} : Direct measurements
 - Choose detector-level observables (O_i) which depend on the top quark mass
 - Generate MC with varied m_t^{MC} values
 - From MC, parameterise $O_i(m_t^{MC})$
 - Take value of $m_t^{\ MC}$ which best describes data

★ Topologies Newest ATLAS result

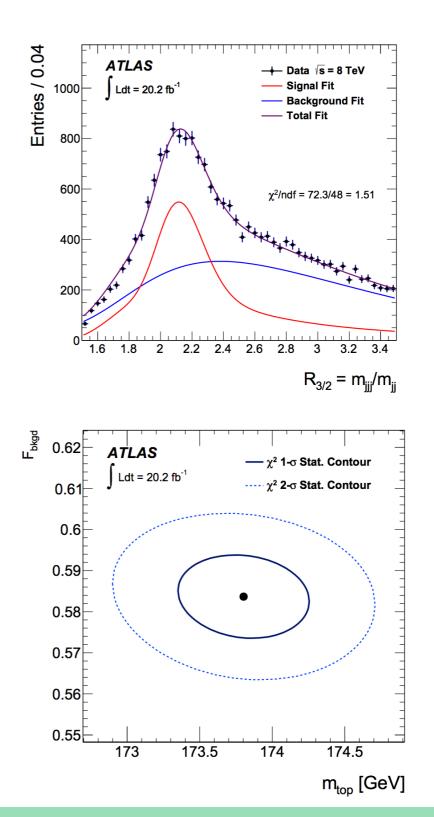
- $t\bar{t}$ all-hadronic
 - 6 jets (2 b-jets)
 - no leptons
 - no E_T^{miss}

- result
 - $t\bar{t}$ semileptonic
 - 4 jets (2 b-jets)
 - 1 lepton
 - $E_T^{miss} > 30 \text{ GeV}$

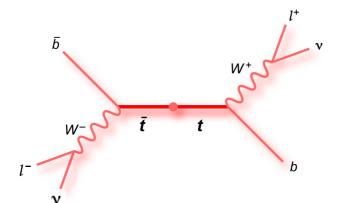

 theory parameter in the lagrangian m_t^{pole} (in pole mass scheme) Cross section measurements

- Take at least a NLO calculation (fix scheme)
- Obtain (differential also) $\sigma_{t\bar{t}+X}(m_t^{pole})$
- Compare measured $\sigma^{exp}_{t\bar{t}+X}$ with theory
- Choose the value of mt^{pole} which best match $\sigma_{t\bar{t}+X}^{exp}$ mt^{pole} well-defined theoretically
- Most precise ATLAS result
 - *tt* dileptonic
 2 b-jets
 2 leptons
 - $E_T^{miss} > 60 \text{ GeV}$

single-t (t leptonic)


- 2 jets (1 b-jet)
- 1 lepton
- $E_T^{miss} > 30 \text{ GeV}$

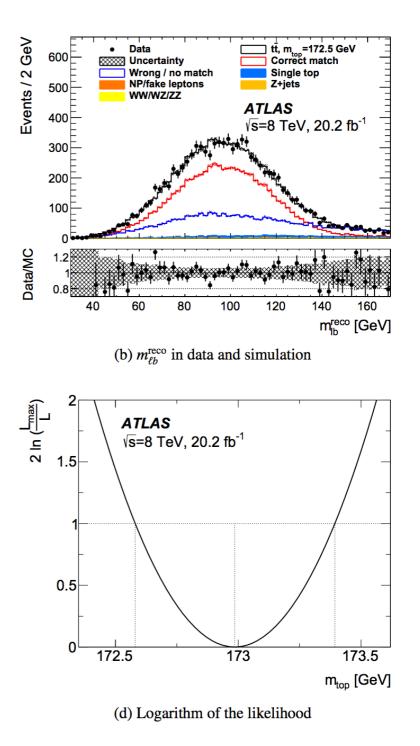
Top quark mass in the all-hadronic channel



- ★ Largest branching ratio (46%) among the possible top quark decay channels
- ★ Challenging because of the large multijet background
- ★ m_{top} extracted from a template fit to the distribution of the ratio of three-jet to dijet masses, $R_{3/2}=m_{jjj}/m_{jj}$ (reduced dependence on the jet energy scale uncertainty)
- The dominant source of systematic uncertainty come from the jet energy scale, hadronisation modelling and the b-jet energy scale.
- ★ with a relative precision of 0.7%, it is about 40% more precise than the previous measurement performed by ATLAS in the all-hadronic channel at 7 TeV.

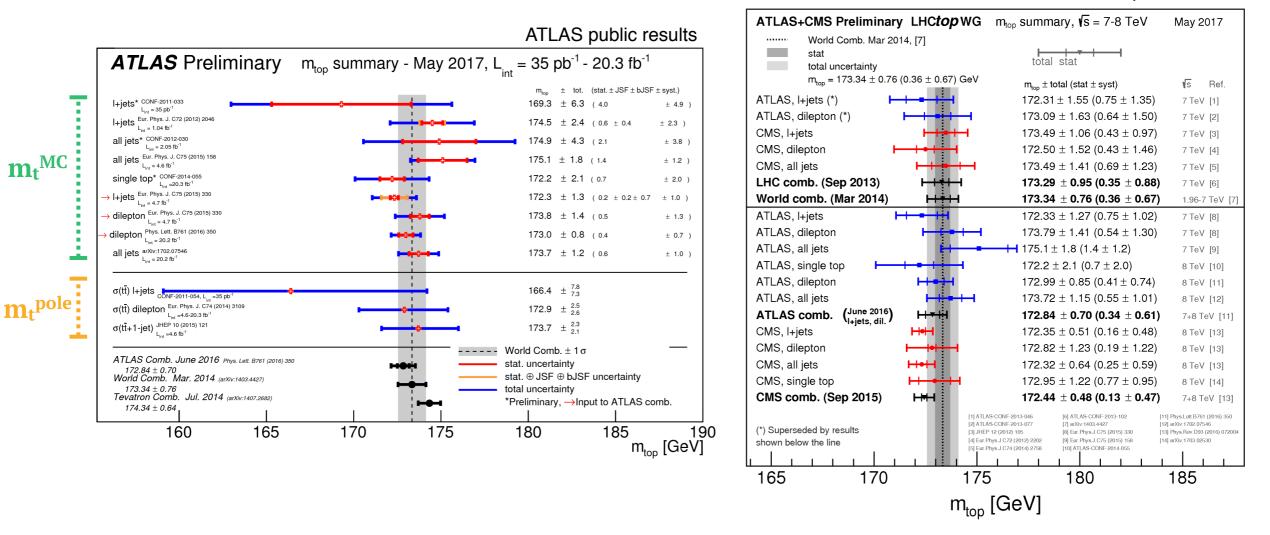
$$m_{\rm top} = 173.72 \pm 0.55 \text{ (stat.)} \pm 1.01 \text{ (syst.)} \text{ GeV}$$

Top quark mass in the dilepton channel



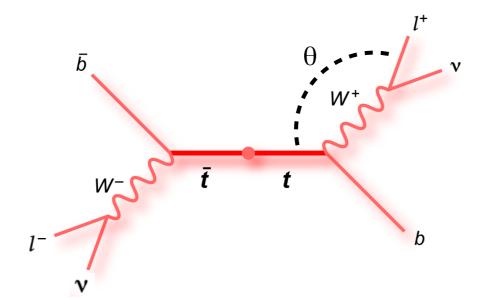
- \star The analysis uses a template fit to m_{lb}
- ★ An unbinned maximum likelihood fit gives the m_{top} value that best describes de data
- ★ Biggest uncertainties come from the jet energy scale and the relative b-to-light-jet energy scale
- ★ The result is the most precise single result in this decay channel to date (40% more precise than the one obtained with 7 TeV data)

$$m_{top} = 172.99 \pm 0.41 (\text{stat}) \pm 0.74 (\text{syst}) \text{GeV}$$


★ The result is combined with ATLAS m_{top} measurements in the lepton+jets channel and the dilepton channel @ 7 TeV with a relative precision of 0.4%

$$m_{top} = 172.84 \pm 0.34 (\text{stat}) \pm 0.61 (\text{syst}) \text{GeV}$$

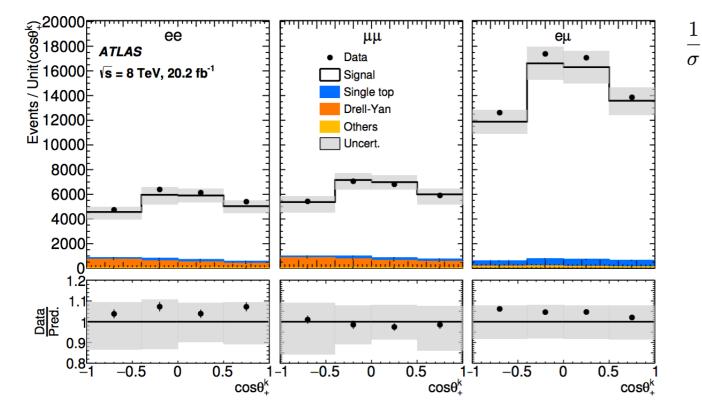
Top quark mass summary


ATLAS public results

- ★ Main gain in precision of top mass measurements lays in the combination of the results
- ★ Uncertainties are dominated by systematics (JES, b-JES and modelling)
- ★ m_t^{MC} and m_t^{pole} are obtained with different techniques and therefore the results are not directly comparable, specially the uncertainties

Top quark spin observables in tt production

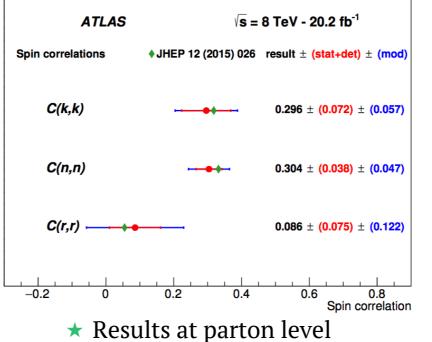
- ★ In the SM, top quarks produced in pairs are unpolarised
- ★ The **spins of the top and the antitop are correlated** and the information is transferred to their decay products, thus affecting their angular distributions.
- * Use tt dilepton events (ee, μμ, eμ)
- ★ The spin density matrix can be expressed in terms of **15 spin observables** using 3 orthogonal spin quantisation axes:
 - 3 polarisation coefficients for the top quark
 - 3 polarisation coefficients for the antitop quark
 - 9 spin correlation coefficients
- * Results are provided at **parton level** in the full phase-space and at stable-particle level in a fiducial phase-space.

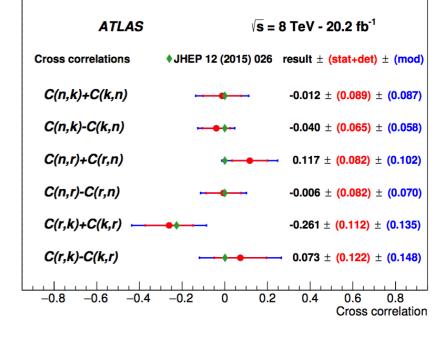


Three axes:

- k: helicity axis
- **n**: transvers axis
- **r**: orthogonal to k & n

θ: angle between the momentum of a decay particle and a quantisation axis

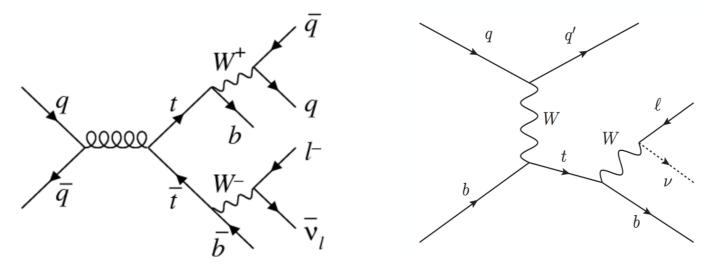

Top quark spin observables in tT production



$$\frac{d^2\sigma}{d\cos\theta_+^a d\cos\theta_-^b} = \frac{1}{4} (1 + B_+^a \cos\theta_+^a + B_-^b \cos\theta_-^b - C a, b) \cos\theta_+^a \cos\theta_-^b)$$
B: (anti)top polarisation
C: spin correlations
(-)+:(anti)top
k: helicity axis
n: transvers axis
r: orthogonal to k & n

★ The dominant source of systematic uncertainties comes from the modelling of the signal, which can represent up to 85% of the total uncertainty.

ATLAS	√s = 8 TeV - 20.2 fb ⁻¹		
Polarisations	♦ JHEP 12 (2015) 026 result ± (stat+det) ± (mod)		
B _+^k			
B_{-}^{k}	-0.064 ± (0.030) ± (0.023)		
B_{+}^{n}	-0.018 ± (0.023) ± (0.024)		
B_{-}^{n}	··◆●·· 0.023 ± (0.024) ± (0.034)		
B'₊	♦ • • • • • • 0.039 ± (0.030) ± (0.029)		
B '_	••••••••••••••••••••••••••••••••••••••		
-0.3 -0.2 -	-0.1 0 0.1 0.2 0.3 Polarisation		



Wtb vertex

$$\mathcal{L}_{Wtb} = -\frac{g}{\sqrt{2}} \,\bar{b}\gamma^{\mu} \left(V_{\rm L} P_{\rm L} + V_{\rm R} P_{\rm R} \right) t W_{\mu}^{-} - \frac{g}{\sqrt{2}} \,\bar{b} \,\frac{i\sigma^{\mu\nu}q_{\nu}}{m_{W}} \left(g_{\rm L} P_{\rm L} + g_{\rm R} P_{\rm R} \right) t W_{\mu}^{-} + \text{h.c.}$$

In the SM: $V_L \sim 1$ $V_R = g_L = g_R = 0$ $V_L \sim 1$ $V_R = g_L = g_R = 0$ $V_R = g_L = g_R = 0$ $V_L \sim 1$ $V_R = g_L = g_R = 0$ $V_L \sim 1$ $V_R = g_L = g_R = 0$ $V_L \sim 1$ $V_R = g_L = g_R = 0$ $V_L \sim 1$ $V_R = g_L = g_R = 0$ $V_R = g_R$

- ***** W boson polarisation: top pairs production, lepton+jets
- ***** W boson spin observables: t-channel single top production, lepton channel
- *** Top quark polarisation**: t-channel single top production, lepton channel
- ***** Triple-differential angular decay rates: t-channel single top production, lepton channel

W polarisation in t**T** semileptonic events

* W boson helicity fractions can be accessed via angular distribution of polarisation analysers:

- Leptonic decay: charged lepton
- Hadronic decay: down-type quark

 \geq 2 tags, (e + μ) + \geq 4-jets ϕ Data

tŦ

Backgrounds

Uncertainty

Events / 0.13

16000

14000

12000

10000

8000

6000

4000

2000

ATLAS

√s = 8 TeV

L dt = 20.2 fb

-0.5

- ★ The down-type quark is identified using a kinematic likelihood fitter (KLFitter), using the weight of the b-jet tagging algorithm
- * Template fit of the distribution $cos\theta^*$ (angle between the analyser and the reversed direction of flight of the b-quark from the top quark decay in the W boson rest frame) for the full phase-space

$$\frac{1}{\sigma}\frac{\mathrm{d}\sigma}{\mathrm{d}\cos\theta^*} = \frac{3}{4}\left(1-\cos^2\theta^*\right)F_0 + \frac{3}{8}\left(1-\cos\theta^*\right)^2F_L + \frac{3}{8}\left(1+\cos\theta^*\right)^2F_R$$

 \geq 2 tags, (e + μ) + \geq 4-jets

Data

Backgrounds

Uncertainty

f 7

Hadronic analyser (1 <i>b</i> -tag + \geq 2 <i>b</i> -tags)			
$F_0 = 0.659 \pm 0.010$ (stat.+bkg. norm.) $^{+0.052}_{-0.054}$ (syst.)			
$F_{\rm L} = 0.281 \pm 0.021$ (stat.+bkg. norm.) $^{+0.063}_{-0.067}$ (syst.)			
$F_{\rm R} = 0.061 \pm 0.022$ (stat.+bkg. norm.) $^{+0.101}_{-0.108}$ (syst.)			

Leptonic	ana	lyser	(≥ 2)	<i>b-</i> 1	tags))
----------	-----	-------	------------	-------------	-------	---

$F_0 = 0.709 \pm 0.012$ (stat.+bkg. norm.) $^{+0.015}_{-0.014}$ (syst.)
$F_{\rm L} = 0.299 \pm 0.008$ (stat.+bkg. norm.) $^{+0.013}_{-0.012}$ (syst.)
$F_{\rm R} = -0.008 \pm 0.006$ (stat.+bkg. norm.) ± 0.012 (syst.)

16000

14000

12000

10000

8000

6000

4000

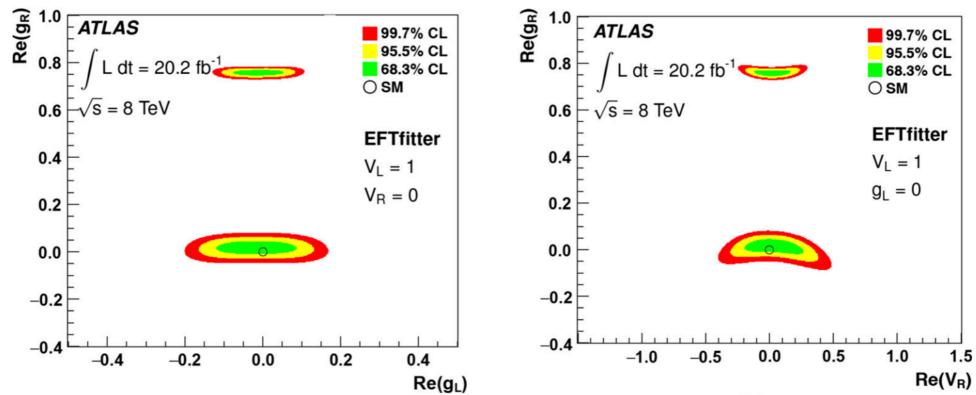
2000

ATLAS

/s = 8 Te\

 $L dt = 20.2 \text{ fb}^{-1}$

Events / 0.13


13

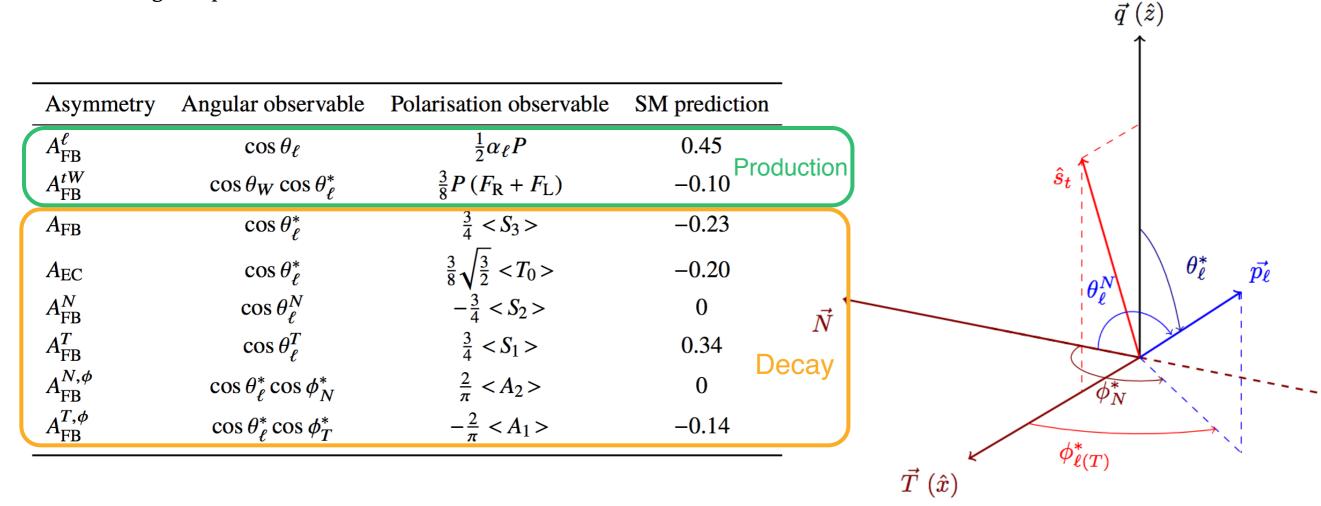
Reconstructed Hadronic cos θ*

0.5

Predictions at NNLO in QCD	
$F_L = 0.311 \pm 0.005$	
$F_R = 0.0017 \pm 0.0001$	
$F_0 = 0.687 \pm 0.005$	

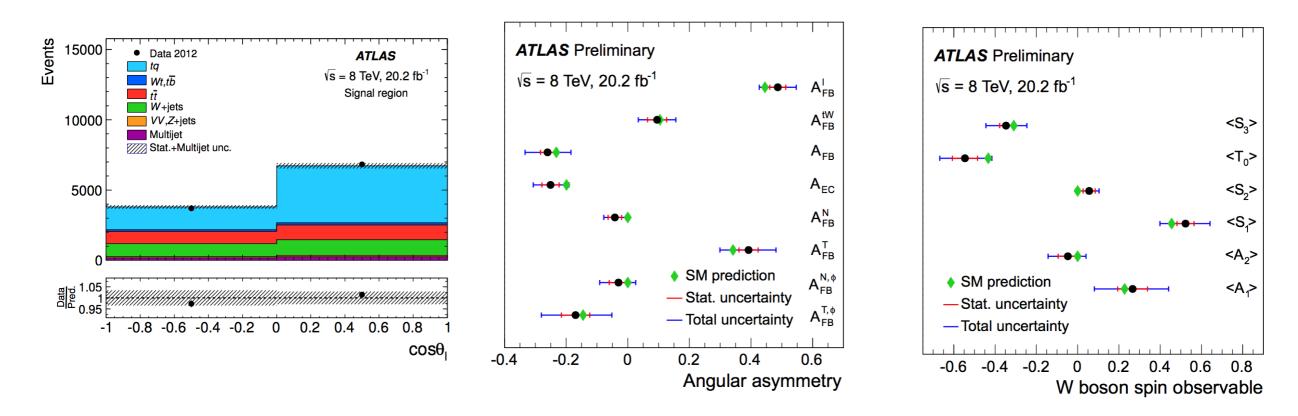
W polarisation in t**T** semileptonic events

* Limits on the anomalous couplings are set assuming these to be real, corresponding to the CP-conserving case.


- V_L is fixed to the SM prediction of one.
- Only one anomalous coupling is allowed to vary at a time, while the rest of them are fixed to their SM predictions

Coupling	95% CL interval
V _R	[-0.24, 0.31]
<i>g</i> L	[-0.14, 0.11]
<i>g</i> r	[-0.02, 0.06], [0.74, 0.78]

- ★ Main uncertainty sources:
 - Leptonic analyser: jet energy scale and resolution and MC template statistics
 - Hadronic analyser: b-tagging uncertainty, jet energy resolution and ttbar modelling


Wtb vertex at production and decay in t-channel events

- ★ Wtb vertex at production: the information about the top polarisation can be measured from asymmetries in the angular distributions of the decay products reconstructed in the top quark rest frame.
- ★ Wtb vertex at decay: the spin density matrix elements for the W boson helicity components 0, ±1 resulting from the decay of polarised top-quarks can be parameterised in terms of expected values of six independent W spin observables which are sensitive to anomalous Wtb couplings. These can be extracted from asymmetries in the angular distributions of the charged lepton reconstructed in the W boson rest frame.

Wtb vertex at production and decay in t-channel events

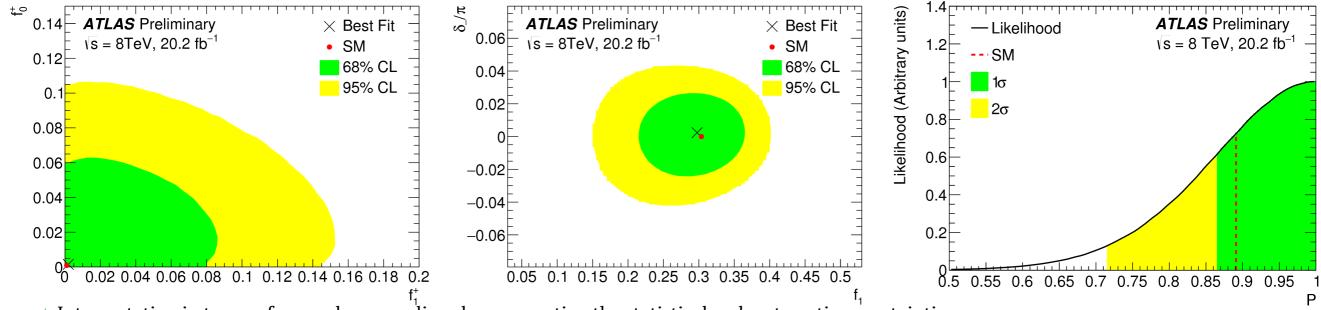
★ W boson spin observables and top polarisation related observables obtained via the measurement of asymmetries assuming SM couplings in the unfolding procedure: **consistency check of the SM**.

★ Two of the asymmetries, A_{FB}^{N} (which has the highest sensitivity to **Im** g_{R}) and A_{FB}^{l} , have been used to extract **limits** on this coupling. For this computation, the rest of the couplings were assumed to have SM values.

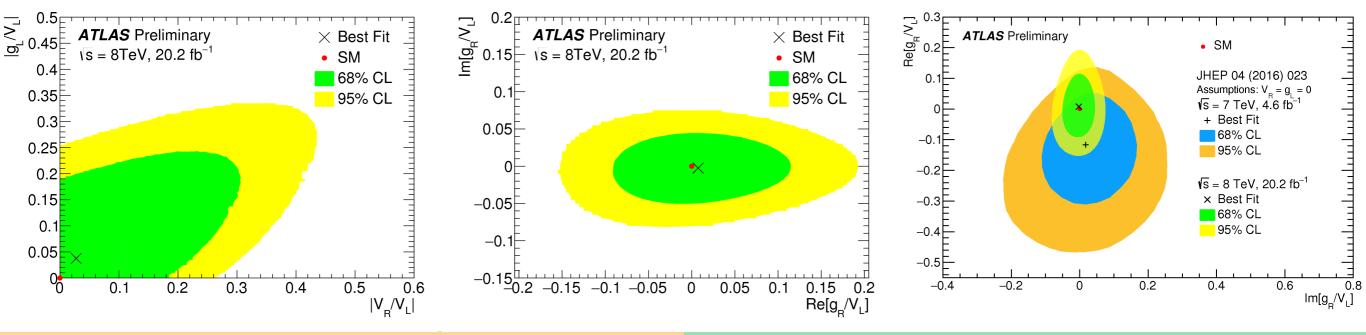
Im gR \in [-0.18, 0.06] at the 95% CL

* The dominant sources of systematic uncertainties are the modelling of the t-channel and $t\overline{t}$ processes, and the jet reconstructions and energy scale.

Wtb vertex: three angle analysis

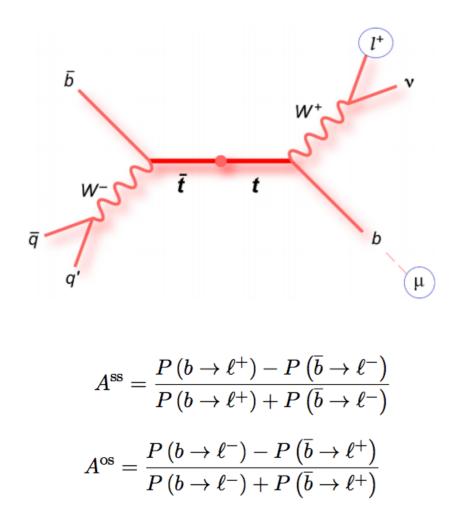

* Complete description of the full space of anomalous couplings governing the Wtb vertex plus de top-quark polarisation by using the normalised triple-differential (θ , θ^* , Φ^*) decay rate of top quarks.

$$\begin{split} \varrho(\theta, \theta^*, \phi^*; P) &= \frac{1}{N} \frac{d^3 N}{d(\cos \theta) d\Omega^*} &= \frac{1}{8\pi} \left\{ \frac{3}{4} \left| A_{1, \frac{1}{2}} \right|^2 (1 + P \cos \theta) (1 + \cos \theta^*)^2 \\ &+ \frac{3}{4} \left| A_{-1, -\frac{1}{2}} \right|^2 (1 - P \cos \theta) (1 - \cos \theta^*)^2 \\ &+ \frac{3}{2} \left(\left| A_{0, \frac{1}{2}} \right|^2 (1 - P \cos \theta) + \left| A_{0, -\frac{1}{2}} \right|^2 (1 + P \cos \theta) \right) \sin^2 \theta^* \\ &- \frac{3\sqrt{2}}{2} P \sin \theta \sin \theta^* (1 + \cos \theta^*) \operatorname{Re} \left[e^{i\phi^*} A_{1, \frac{1}{2}} A_{0, \frac{1}{2}}^* \right] \\ &- \frac{3\sqrt{2}}{2} P \sin \theta \sin \theta^* (1 - \cos \theta^*) \operatorname{Re} \left[e^{-i\phi^*} A_{-1, -\frac{1}{2}} A_{0, -\frac{1}{2}}^* \right] \right\} = \sum_{k=0}^2 \sum_{l=0}^2 \sum_{m=-l}^l a_{k,l,m} M_{k,l}^m(\theta, \theta^*, \phi^*) \end{split}$$

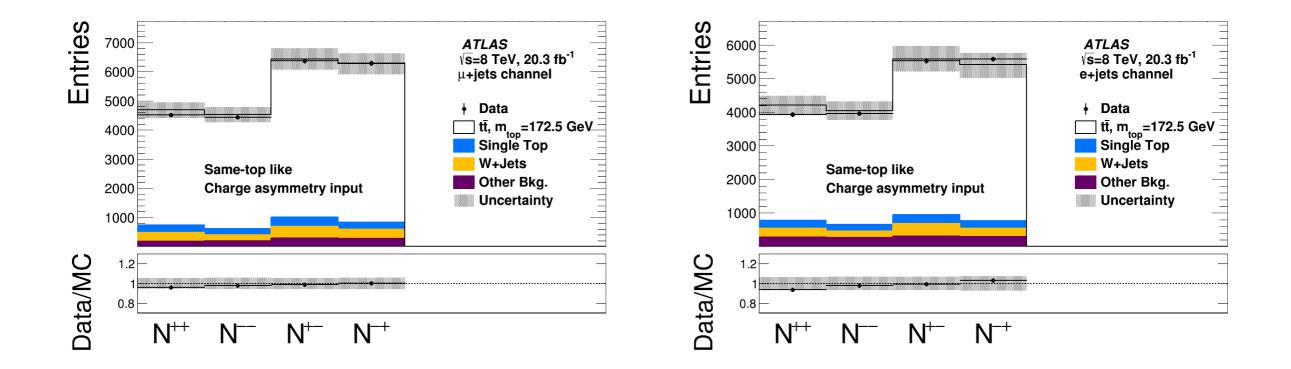

- ★ Only nine of the coefficients A_{k,l,m} are nonzero and can be parameterised by three amplitude fractions and and two phases:
 - 3 observable amplitude fractions: f₁,f₁₊,f₀₊
 - 1 observable phase: δ -
 - 1 likely unobservable phase: δ +
 - 1 observable nuisance parameter: P
- * Detector effects are deconvolved from data by measuring differential rates using Fourier techniques
- ★ All amplitudes and phases (and couplings) + P are determined simultaneously and include all correlations

Wtb vertex: three angle analysis

- ★ Global fit: Likelihood function with all correlations (covariance matrix)
 - Distributions are obtained from numerical calculations of the likelihood function



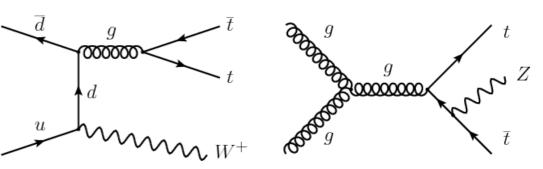
- ★ Interpretation in terms of anomalous couplings by propagating the statistical and systematic uncertainties
 - Limits are placed simultaneously on the possible complex values of the ratio of the anomalous couplings
 - No assumptions on values of the other anomalous couplings


CP asymmetry in tt dileptonic events

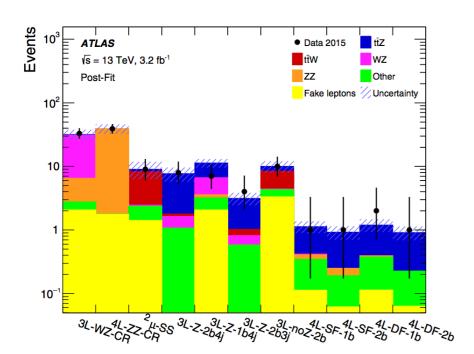
- ★ CP asymmetries in heavy-flavour mixing and decay from *b*-hadrons from top quark decays.
- ★ Measurement of same- and opposite-sign charge asymmetries from the probabilities for an initial (anti)*b*-quark to decay via either a positively or negatively charged muon.
- * Measurement of CP asymmetries which relate to $B_q \overline{B}_q$ mixing and direct CP-violating *b* and *c*-decays
- ★ Asymmetries unfolded to a well-defined fiducial region

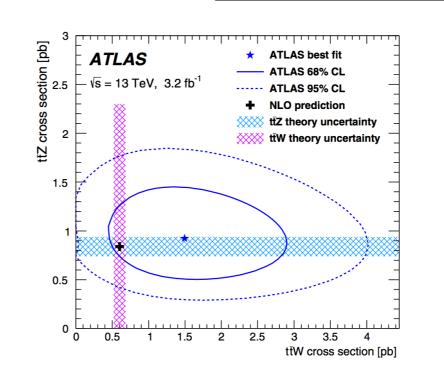
$$\begin{split} A^{b\ell}_{\mathrm{mix}} &= \frac{\Gamma\left(b \to \overline{b} \to \ell^+ X\right) - \Gamma\left(\overline{b} \to b \to \ell^- X\right)}{\Gamma\left(b \to \overline{b} \to \ell^+ X\right) + \Gamma\left(\overline{b} \to b \to \ell^- X\right)}, \\ A^{bc}_{\mathrm{mix}} &= \frac{\Gamma\left(b \to \overline{b} \to \overline{c} X\right) - \Gamma\left(\overline{b} \to b \to c X\right)}{\Gamma\left(b \to \overline{b} \to \overline{c} X\right) + \Gamma\left(\overline{b} \to b \to c X\right)}, \\ A^{b\ell}_{\mathrm{dir}} &= \frac{\Gamma\left(b \to \ell^- X\right) - \Gamma\left(\overline{b} \to \ell^+ X\right)}{\Gamma\left(b \to \ell^- X\right) + \Gamma\left(\overline{b} \to \ell^+ X\right)}, \\ A^{c\ell}_{\mathrm{dir}} &= \frac{\Gamma\left(\overline{c} \to \ell^- X_L\right) - \Gamma\left(c \to \ell^+ X_L\right)}{\Gamma\left(\overline{c} \to \ell^- X_L\right) + \Gamma\left(c \to \ell^+ X_L\right)}, \\ A^{bc}_{\mathrm{dir}} &= \frac{\Gamma\left(b \to c X_L\right) - \Gamma\left(\overline{b} \to \overline{c} X_L\right)}{\Gamma\left(b \to c X_L\right) + \Gamma\left(\overline{b} \to \overline{c} X_L\right)}, \end{split}$$

CP asymmetry in tt dileptonic events



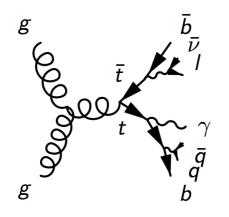
	Data (10^{-2})	MC (10^{-2})	Existing limits (2σ) (10^{-2})	SM prediction (10^{-2})
$A^{ m ss}$	$-0.7 \hspace{0.1in} \pm \hspace{0.1in} 0.8$	$0.05 \hspace{0.1in} \pm \hspace{0.1in} 0.23 \hspace{0.1in}$	-	$< 10^{-2}$
A^{os}	$0.4 \hspace{.1in} \pm \hspace{.1in} 0.5$	$-0.03 \ \pm 0.13$	-	$< 10^{-2}$
$A^b_{\rm mix}$	$ -2.5\ \pm\ 2.8$	$0.2\ \pm 0.7$	< 0.1	$< 10^{-3}$
$A^{b\ell}_{ m dir}$	0.5 ± 0.5	-0.03 ± 0.14	< 1.2	$< 10^{-5}$
$A_{ m dir}^{c\ell}$		$-0.06 \ \pm 0.25$		$< 10^{-9}$
$A^{bc}_{ m dir}$	1	$0.07 \hspace{0.1in} \pm \hspace{0.1in} 0.29 \hspace{0.1in}$		$< 10^{-7}$


 ★ The main contribution to systematic uncertainties come from the modelling of additional radiation and PDF uncertainties, the jet energy scale and the lepton energy resolution.

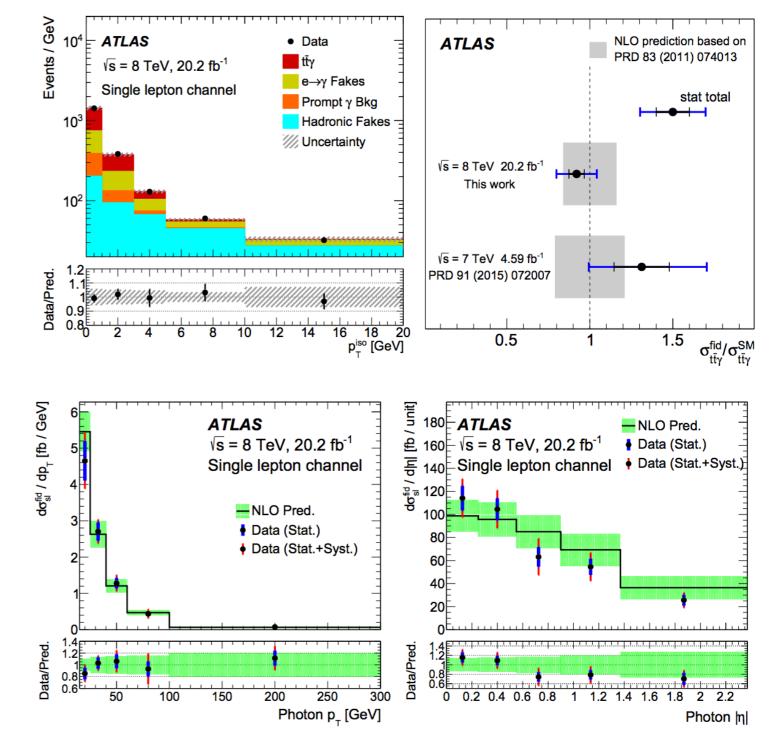

tTV production in multilepton final states

- \star Large datasets give access to rate tt+W and tt+Z processes
 - ttZ: information about neutral-current coupling to the top quark.
 - Sensitive to the presence of BSM physics (vector-like quarks, strongly coupled Higgs boson, technicolor)
- $\star~\sigma_{ttW}$ and σ_{ttZ} are fitted simultaneously in nine signal regions and two control regions
 - Definition based on the number, charge and flavour of leptons and on the number of jets and b-jets.

Process	$t\bar{t}$ decay	Boson decay	Channel
tŦW	$(\mu^{\pm} vb)(qar{q}b) \ (\ell^{\pm} vb)(\ell^{\mp} vb)$	$\mu^{\pm} u \ \ell^{\pm} u$	SS dimuon Trilepton
tīZ	$(\ell^\pm u b)(qar q b) \ (\ell^\pm u b)(\ell^\mp u b)$	$\ell^+\ell^-$ $\ell^+\ell^-$	Trilepton Tetralepton



 $\sigma_{ttZ} = 0.9 \pm 0.3 \text{ pb}$ (SM: 0.84 ± 12%)


$$\sigma_{ttW} = 1.5 \pm 0.8 \text{ pb}$$

(SM: 0.5 ± 12%)

$t\bar{t}\gamma$ production in multilepton final states

- \star Probe the t γ electroweak coupling
- ★ Fiducial cross section of top-quark pair events in association with a photon
- * Differential cross sections wrt. photon p_T and η are measured.
- ★ Measurement based on the minimisation of a profile likelihood ratio, using the photon track isolation as the discriminating variable.
- ★ The dominant source of systematic uncertainty come from the hadron-fake template and the template describing electrons misidentified as photons

$$\sigma_{\rm sl}^{\rm fid} = 139 \pm 7(\text{stat}) \pm 17(\text{syst})$$
fb
 $\sigma(\text{NLO prediction}) = 151 \pm 24$ fb

Conclusion

- ★ The top quark provides a potential window to new physics.
- ★ Its properties are studied with great precision at ATLAS experiment
- ★ Most of the precision measurements with Run1 data @ 8TeV are finished
- ★ All top quark properties are consistent with SM with current precision
- ★ Main sources of uncertainties come from jet and b-jet energy scale and the modelling of the ttbar processes
- ★ Starting to look at Run2 data @ 13TeV with larger statistics