Strange Charmed Baryons Spectroscopy

Elena Solovieva

Moscow Institute of Physics and Technology Lebedev Physical Institute of the RAS

Known Charmed Baryon States

0

of

0

Ξ_c Family: PDG'2016

State	Decay mode	Mass, MeV/c^2	Width, MeV	J^P
$\Xi_c^{\prime+}$	$\Xi_c^+\gamma$	2575.7 ± 3.0		$\frac{1}{2}^{+}$
$\Xi_c^{\prime 0}$	$\Xi_c^0 \gamma$	2577.9 ± 2.9		$\frac{1}{2}^{+}$
$\Xi_c(2645)^+$	$\Xi_c^0 \pi^+$	2645.9 ± 0.5	2.6 ± 0.4	$\frac{3}{2}^{+}$
$\Xi_{c}(2645)^{0}$	$\Xi_c^+\pi^-$	2645.9 ± 0.5	< 5.5 @ 90% CL	$\frac{3}{2}^{+}$
$\Xi_c(2790)^+$	$\Xi_c^{\prime 0} \pi^+$	2789.1 ± 3.2	<15 @ 90% CL	$\frac{1}{2}^{-}$
$\Xi_{c}(2790)^{0}$	$\Xi_c^{\prime+}\pi^-$	2791.9 ± 3.3	<12@ 90% CL	$\frac{1}{2}^{-}$
$\Xi_c(2815)^+$	$\Xi_c^+ \pi^+ \pi^-, \Xi_c(2645)^0 \pi^+$	2816.6 ± 0.9	< 3.5 @ 90% CL	$\frac{3}{2}^{-}$
$\Xi_c(2815)^0$	$\Xi_c^0 \pi^+ \pi^-, \Xi_c(2645)^+ \pi^-$	2819.6 ± 1.2	< 6.5 @ 90% CL	$\frac{3}{2}^{-}$
$\Xi_{c}(2930)^{0}$	$\Lambda_c^+ K^-$	2931 ± 6	36 ± 13	
$\Xi_c(2970)^+$	$\Lambda_c^+ K^- \pi^+, \Sigma_c^{++} K^-, \Xi_c(2645)^0 \pi^+$	2970.7 ± 2.2	17.9 ± 3.5	
$\Xi_{c}(2970)^{0}$	$\Xi_c(2645)^+\pi^-$	2968.0 ± 2.6	20 ± 7	
$\Xi_{c}(3055)^{+}$	$\Sigma_c^{++}K^-$	3055.1 ± 1.7	11 ± 4	
$\Xi_{c}(3055)^{0}$				
$\Xi_c(3080)^+$	$\Lambda_c^+ K^- \pi^+, \Sigma_c^{++} K^-, \Sigma_c(2520)^{++} K^-$	3076.94 ± 0.28	4.3 ± 1.5	
$\Xi_c(3080)^0$	$\Lambda_c^+ K_S^0 \pi^-, \Sigma_c^0 K_S^0, \Sigma_c(2520)^0 K_S^0$	3079.9 ± 1.4	5.6 ± 2.2	#3

Decays to Ξ_c : Ξ_c' Isodoublet

Decays to Ξ_c : $\Xi_c(2790)$ Isodoublet

Decays to Ξ_c : Ξ_c (2645) Isodoublet

Decays to $\Xi_c: \Xi_c(2815)$ Isodoublet

Decays to Ξ_c : $\Xi_c(2970)$ Isodoublet

Ξ_c Family: Decays to Ξ_c

Particle	Yield	Mass	$M - M(\Xi_c)$	$M - M(\Xi_c')$	Width
$\Xi_c'^+$	7055 ± 211	$2578.4 \pm 0.1 \pm 0.4^{+0.3}_{-0.4}$	$110.5 \pm 0.1 \pm 0.4$		
PDG		2575.6 ± 3.0	107.8 ± 3.0		
$\Xi_c^{\prime 0}$	11560 ± 276	$2579.2 \pm 0.1 \pm 0.4^{+0.3}_{-0.4}$	$108.3 \pm 0.1 \pm 0.4$		
PDG		2577.9 ± 2.9	107.0 ± 2.9		
$\Xi_c(2645)^+$	1260 ± 40	$2645.58 \pm 0.06 \pm 0.07^{+0.28}_{-0.40}$	$174.66 \pm 0.06 \pm 0.07$		$2.06 \pm 0.13 \pm 0.13$
PDG		2645.9 ± 0.5	175.0 ± 0.6		$2.6\pm0.2\pm0.4$
$\Xi_c(2645)^0$	975 ± 36	$2646.43 \pm 0.07 \pm 0.07^{+0.28}_{-0.40}$	$178.46 \pm 0.07 \pm 0.07$		$2.35 \pm 0.18 \pm 0.13$
PDG		2645.9 ± 0.5	178.0 ± 0.6		< 5.5
$\Xi_c(2790)^+$	2231 ± 103	$2791.6 \pm 0.2 \pm 0.1 \pm 0.4^{+0.3}_{-0.4}$	$320.7 \pm 0.2 \pm 0.1 \pm 0.4$	$213.2 \pm 0.2 \pm 0.1$	$8.9\pm0.6\pm0.8$
PDG		2789.8 ± 3.2	318.2 ± 3.2		< 15
$\Xi_c(2790)^0$	1241 ± 72	$2794.9 \pm 0.3 \pm 0.1 \pm 0.4^{+0.3}_{-0.4}$	$323.8 \pm 0.2 \pm 0.1 \pm 0.4$	$215.7 \pm 0.2 \pm 0.1$	$10.0 \pm 0.7 \pm 0.8$
PDG		2791.9 ± 3.3	324.0 ± 3.3		< 12
$\Xi_c(2815)^+$	941 ± 35	$2816.73 \pm 0.08 \pm 0.06^{+0.28}_{-0.40}$	$348.80 \pm 0.08 \pm 0.06$		$2.43 \pm 0.20 \pm 0.17$
PDG		2816.6 ± 0.9	348.7 ± 0.9		< 3.5
$\Xi_c(2815)^0$	1258 ± 40	$2820.20 \pm 0.08 \pm 0.07^{+0.28}_{-0.40}$	$349.35 \pm 0.08 \pm 0.07$		$2.54 \pm 0.18 \pm 0.17$
PDG		2819.6 ± 1.2	348.8 ± 1.2		< 6.5
$\Xi_c(2970)^+$	916 ± 55	$2966.0 \pm 0.8 \pm 0.2^{+0.3}_{-0.4}$	$498.1 \pm 0.8 \pm 0.2$		$28.1 \pm 2.4^{+1.0}_{-5.0}$
PDG		2970.7 ± 2.2			17.9 ± 3.5
$\Xi_c(2970)^0$	1443 ± 75	$2970.8 \pm 0.7 \pm 0.2^{+0.3}_{-0.4}$	$499.9 \pm 0.7 \pm 0.2$		$30.3 \pm 2.3^{+1.0}_{-1.8}$
PDG		$2968.0 \pm 2.6 \pm 0.5$			20 ± 7

[J. Yelton et al. (Belle Collaboration), Phys. Rev. D 94, 052011 (2016)]

Ξ_c Family: Decays to $\Lambda_c(\Sigma)$

[Y. Kato, T.Iijima et al. (Belle Collaboration), Phys. Rev. D 89, 052003 (2014)]

[B. Aubert *et al.* (BaBar Collaboration), Phys. Rev. D **77**, 012002 (2008)]

 $\Xi_c(3080)^0$

Ξ_c Family: Decays to ΛD

Ξ_{c} Family

State	Decay mode	Mass, MeV/c^2	Width, MeV	J^P
$\Xi_c^{\prime+}$	$\Xi_c^+\gamma$	2577.4 ± 1.2		$\frac{1}{2}^{+}$
$\Xi_c^{\prime 0}$	$\Xi_c^0 \gamma$	2578.8 ± 0.5		$\frac{1}{2}^{+}$
$\Xi_c(2645)^+$	$\Xi_c^0 \pi^+$	2645.53 ± 0.31	2.14 ± 0.19	$\frac{3}{2}^{+}$
$\Xi_c(2645)^0$	$\Xi_c^+\pi^-$	2646.32 ± 0.31	2.35 ± 0.22	$\frac{3}{2}^{+}$
$\Xi_c(2790)^+$	$\Xi_c^{\prime 0} \pi^+$	2792.0 ± 0.5	8.9 ± 1.0	$\frac{1}{2}^{-}$
$\Xi_c(2790)^0$	$\Xi_c^{\prime+}\pi^-$	2792.8 ± 1.2	10.0 ± 1.1	$\frac{1}{2}^{-}$
$\Xi_c(2815)^+$	$\Xi_c^+ \pi^+ \pi^-, \Xi_c(2645)^0 \pi^+, \Xi_c^{0\prime} \pi^+$	2816.67 ± 0.31	2.43 ± 0.26	$\frac{3}{2}^{-}$
$\Xi_c(2815)^0$	$\Xi_c^0 \pi^+ \pi^-, \Xi_c(2645)^+ \pi^-, \Xi_c^{+\prime} \pi^-$	2820.22 ± 0.32	2.54 ± 0.25	$\frac{3}{2}^{-}$
$\Xi_c(2930)^0$	$\Lambda_c^+ K^-$	2931 ± 6	36 ± 13	
$\Xi_c(2970)^+$	$\Lambda_c^+ K^- \pi^+, \Sigma_c^{++} K^-, \Xi_c(2645)^0 \pi^+, \Xi_c^{0\prime} \pi^+$	2969.4 ± 0.8	$20.9^{+2.4}_{-3.5}$	
$\Xi_c(2970)^0$	$\Xi_c(2645)^+\pi^-, \ \Xi_c^{+\prime}\pi^-$	2967.8 ± 0.8	$28.1_{-4.0}^{+3.4}$	
$\Xi_c(3055)^+$	$\Sigma_c^{++}K^-, \Lambda D^+$	3055.9 ± 0.4	7.8 ± 1.9	
$\Xi_c(3055)^0$	ΛD^{0}	3059.0 ± 0.8	6.4 ± 2.4	
$\Xi_c(3080)^+$	$\Lambda_c^+ K^- \pi^+, \ \Sigma_c^{++} K^-, \ \Sigma_c(2520)^{++} K^-, \ \Lambda D^+$	3077.2 ± 0.4	3.6 ± 1.1	
$\Xi_c(3080)^0$	$\Lambda_c^+ K_S^0 \pi^-, \Sigma_c^0 K_S^0, \Sigma_c(2520)^0 K_S^0$	3079.9 ± 1.4	5.6 ± 2.2	

$\Omega_{\rm c}$ Family

 $\rightarrow \Omega_c^0 \gamma$ Ω_{c}^{*0}

 $[70.8 \pm 1.0(stat.) \pm 1.1(syst.)] MeV/c^2$

[B. Aubert *et al.* (BaBar Collaboration), Phys. Rev. Lett. **97**, 232001 (2006)]

$$\Delta M_{\Omega_c^0} = \left[70.7 \pm 0.9(stat.) {+0.1 \atop -0.9}(syst.)\right] MeV/c^2$$

[E. Solovieva, R. Chistov *et al.* (Belle Collaboration), Phys. Lett. B **672**, 1 (2009)]

$\Omega_{\rm c}$ Family

Conclusions

- Recently observed excited Ω_c states present a unique opportunity to test and further improve theoretical models, that predict properties of heavy hadrons.
- More accurate Ξ_c mass values is of both practical and theoretical interest, and knowing their widths can then lead to measurements of the matrix elements of their decays. These matrix elements are also applicable to other excited charm and bottom baryons.
- No direct measurements of the J^{P} of any of the excited strange charmed baryons are available. Constraints on the quantum numbers can be inferred only from the decay pattern.
- Interesting feature is that highly excited charmed baryons can decay to a charm meson and a non-charm baryon.