Charged Higgs and Top-quark Associated Production with the MSSM Higgs sector extended by dimension six operators

Elena Petrova

work with Mikhail Dubinin

 $SINP\ MSU$ 

Physics Department, Lomonosov Moscow State University

QFTHEP'2017

June 27, 2017

Elena Petrova work with Mikhail Dubinin

LHC (ATLAS, CMS):  $m_H \sim 125$  GeV with SM-like properties

Models with an extended Higgs sector are constrained by

- the measured mass,
- **②** CP quantum numbers,
- and production rates of the new boson.

The discovery of another scalar boson, neutral or charged, would represent unambiguous evidence for the presence of physics beyond the SM.

THDM: Type II (MSSM)  $h, H, A, H^+, H^-$ 

LEP2<sup>1</sup>:  $m_{H^{\pm}} \ge 78.6 \text{ GeV}$  at a 95 % CL

<sup>1</sup>Phys. Lett. B **543** (2012) 1; Eur. Phys. J. C **34** (2004) 399; Phys. Lett. B **575** (2003) 208; Eur. Phys. J. C **72** (2012) 2076.

Elena Petrova work with Mikhail Dubinin Charged Higgs and Top-quark Associated Production with

## Production of the charged Higgs boson

The charged Higgs boson is searched<sup>2</sup>

- for top quark decays for  $m_{H^+} < m_t m_b$ ,
- **2** in the direct production  $pp \to \overline{t}bH^+$  for  $m_{H^+} > m_t m_b$



| Decay mode                             | Signatures for $m_{\rm H^+} < m_{\rm t} - m_{\rm b}$                                      | Signatures for $m_{\rm H^+} > m_{\rm t} - m_{\rm b}$ |
|----------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------|
|                                        | $pp  ightarrow t \overline{t}  ightarrow b H^+ \overline{b} H^- / b H^+ \overline{b} W^-$ | $pp\to \overline{t}(b)H^+$                           |
| ${ m H^+}  ightarrow {	au^+}  u_{	au}$ | $\tau_{ m h}$ +jets                                                                       | $	au_{ m h}$ +jets , $\mu	au_{ m h}$ , $\ell\ell'$   |
| ${\rm H^+} \rightarrow t \overline{b}$ | —                                                                                         | $\mu 	au_{ m h}$ , $\ell \ell'$ , $\ell + { m jets}$ |

<sup>2</sup>The CMS Collab., JHEP11(2015)018, arXiv:1508.07774v2[hep-ex]

Elena Petrova work with Mikhail Dubinin

 $\sqrt{s}$ =8 TeV

| $m_{H^+}$ : 80–160 GeV                                 | $180600~\mathrm{GeV}$                                           |
|--------------------------------------------------------|-----------------------------------------------------------------|
| $B(t \to H^{\pm}b)B(H^{\pm} \to \tau^{\pm}\nu_{\tau})$ | $\sigma(pp \to t(b)H^{\pm})B(H^{\pm} \to \tau^{\pm}\nu_{\tau})$ |
| $= 1.2 – 0.5 \% \mathrm{CMS}$                          | =0.38-0.025  pb  CMS                                            |
| $B(t \to H^+ b) B(H^+ \to \tau^+ \nu_\tau)$            | $\sigma(pp \to t(b)H^+)B(H^+ \to \tau^{\pm}\nu_{\tau})$         |
| =1.3– $0.2~%$ ATLAS                                    | =0.8-0.004  pb  ATLAS                                           |
| if $\tan \beta < 5$ then                               | if $B(H^{\pm} \to tb) = 1$ then                                 |
| $B(H^+ \to c\overline{s}) = 1$                         | $\sigma(pp \to t(b)H^{\pm})$                                    |
| $B(t \rightarrow H^+ b) = 5 - 1 \% \text{ ATLAS}$      | =2.0-0.13  pb CMS                                               |

CMS: JHEP11 (2015) 018, arXiv:1508.07774 ATLAS: JHEP 03 (2015) 088, arXiv:1412.6663; Eur. Phys. J. C 73 (2013) 2465

Elena Petrova work with Mikhail Dubinin



Expected and observed 95% CL upper limits on  $\sigma(pp \to \overline{t}(b)H^+$  for the combination of the  $\mu\tau_h, l+\text{jets}$ , and ll' final states assuming  $B(H^+ \to t\overline{b})=1$ . The region above the solid line is excluded<sup>3</sup>

<sup>3</sup>The CMS Collab., JHEP11(2015)018, arXiv:1508.07774v2[hep-ex].

Elena Petrova work with Mikhail Dubinin Charged Higgs and Top-quark Associated Production with

|                                    | $m_h^{\max}$ | $m_h^{mod+}$ | $m_h^{\text{mod}-}$ | light stop | light stau | $\tau$ -phobic | low- $M_H$ |
|------------------------------------|--------------|--------------|---------------------|------------|------------|----------------|------------|
| $m_{\rm top}$ [GeV]                |              |              |                     | 173.2      |            |                |            |
| $M_S$ [GeV]                        | 1000         | 1000         | 1000                | 500        | 1000       | 1500           | 1500       |
| $\mu$ [GeV]                        | 200          | 200          | 200                 | 350        | 500        | 2000           | varied     |
| $X_t^{\overline{\mathrm{MS}}}/M_S$ | $\sqrt{6}$   | 1.6          | -2.2                | 2.2        | 1.7        | 2.9            | 2.9        |

Table: Different MSSM benchmark scenarios <sup>4</sup>.

We consider a simplified scenario with following assumptions

- **Q** RGE's contributions and 1,2 generations of squarks are neglected,
- **2** the main contributions come from threshold effects and two-loop

$$\Delta\lambda_i = \Delta\lambda_i [1-\texttt{loop}] + \Delta\lambda_i [2-\texttt{loop}], \qquad \Delta\lambda_i [1-\texttt{loop}] = \Delta\lambda^{\text{eff.pot}} - \Delta\lambda^{\text{fie}}$$

the additional one-loop contributions of the dimension-six operators may be included.

Free parameters:  $m_{H^{\pm}}, M_S, \tan \beta, \mu, A_t = A_b = A$ 

<sup>4</sup>M. Carena et al, Eur. Phys. J. C 73, 2552 (2013) Elena Petrova work with Mikhail Dubinin Charged Higgs and Top-quark Associated Production with



Elena Petrova work with Mikhail Dubinin

Charged Higgs and Top-quark Associated Production with



Elena Petrova work with Mikhail Dubinin

Cross sections  $\sigma(gg, q\overline{q} \to \overline{t}bH^+)$ 

 $\sqrt{s}{=}13~{\rm TeV}$ 

Computations are performed in CompHEP

| Scenario              | $m_{H^{\pm}}$ | $\tan \beta^{(4)}$ | $\tan \beta^{(6)}$ | $\sigma^{(4)}$ , fb | $\sigma^{(6)}$ , fb |
|-----------------------|---------------|--------------------|--------------------|---------------------|---------------------|
|                       | 200           | 6.790              | 7.020              | $101.200 \pm 0.350$ | $102.420 \pm 0.040$ |
|                       | 400           | 4.990              | 5.180              | $27.749 \pm 0.080$  | $24.895 \pm 0.300$  |
|                       | 600           | 4.800              | 4.980              | $18.394 \pm 0.033$  | $30.853 \pm 0.021$  |
| $m_h^{\max}$          | 600           | 0.453              | 0.428              | $549.860 \pm 0.006$ | $617.160 \pm 9.380$ |
|                       | 800           | 0.488              | 0.468              | $155.520 \pm 1.410$ | $173.660 \pm 1.300$ |
|                       | 800           | 4.730              | 4.920              | $2.289 \pm 0.008$   | $2.224 \pm 0.007$   |
|                       | 1000          | 4.705              | 4.890              | $0.873 \pm 0.003$   | $0.863 \pm 0.003$   |
|                       | 1000          | 0.501              | 0.482              | $56.356 \pm 0.197$  | $61.848 \pm 0.184$  |
|                       | 200           | 13.310             | 13.690             | $258.710 \pm 0.676$ | $268.470 \pm 0.895$ |
| $m_h^{\text{mod}+}$   | 400           | 9.460              | 9.740              | $34.013 \pm 0.179$  | $38.232 \pm 0.300$  |
| 11                    | 1000          | 9.258              | 9.553              | $1.139 \pm 0.005$   | $1.224 \pm 0.006$   |
|                       | 1000          | 0.405              | 0.403              | $85.792 \pm 0.328$  | $87.799 \pm 0.304$  |
|                       | 200           | 6.896              | 6.938              | $97.456 \pm 0.286$  | $99.564 \pm 0.256$  |
|                       | 600           | 4.890              | 4.920              | $6.686 \pm 0.025$   | $7.015 \pm 0.038$   |
| $m_{h}^{\text{mod}-}$ | 600           | 0.489              | 0.488              | $468.680 \pm 1.910$ | $461.71 \pm 2.32$   |
| n                     | 1000          | 4.798              | 4.828              | $0.891 \pm 0.004$   | $0.882 \pm 0.004$   |
|                       | 1000          | 0.521              | 0.520              | $53.482 \pm 0.242$  | $51.946 \pm 0.229$  |

Elena Petrova work with Mikhail Dubinin

| Scenario   | $m_{H^{\pm}}$ | $\tan \beta^{(4)}$ | $\tan \beta^{(6)}$ | $\sigma^{(4)}$ , fb | $\sigma^{(6)}$ , fb |
|------------|---------------|--------------------|--------------------|---------------------|---------------------|
|            | 200           | 12.018             | 13.488             | $216.170 \pm 0.415$ | $265.680 \pm 0.442$ |
| light stop | 600           | 8.280              | 9.492              | $7.254 \pm 0.015$   | $8.655 \pm 0.015$   |
|            | 1000          | 8.119              | 9.320              | $0.953 \pm 0.004$   | $1.995\pm0.002$     |
|            | 200           | 11.032             | 11.208             | $194.050 \pm 0.287$ | $198.870 \pm 0.348$ |
| light stau | 600           | 7.550              | 7.665              | $12.191 \pm 0.012$  | $12.339 \pm 0.012$  |
| -          | 1000          | 7.399              | 7.512              | $1.528 \pm 0.001$   | $1.547\pm0.002$     |
|            | 200           | 5.865              | 7.465              | $96.952 \pm 0.280$  | $106.650 \pm 0.371$ |
| au-phobic  | 600           | 4.626              | 6.495              | $7.355 \pm 0.048$   | $6.749 \pm 0.049$   |
|            | 600           | 0.397              | _                  | $702.540 \pm 3.430$ | —                   |
|            | 1000          | 4.563              | 6.449              | $0.932 \pm 0.004$   | $0.932 \pm 0.006$   |
|            | 1000          | 1.161              | _                  | $10.738 \pm 0.057$  | _                   |

| Scenario   | $m_{H^{\pm}},  \text{GeV}$ | $\mu$ , GeV | $\tan\beta$ | $\sigma^{(6)},  \mathrm{pb}$ |
|------------|----------------------------|-------------|-------------|------------------------------|
| low- $m_H$ | 148.9                      | 4660        | 4           | $3.684 \pm 0.024$            |
|            | 146.4                      | 4400        | 4.5         | $3.691 \pm 0.022$            |

Table: Cross sections for  $gg, q\overline{q} \to \overline{t}bH^+$  where  $m_H = 125$  GeV.

Elena Petrova work with Mikhail Dubinin



The CMS Collab., JHEP11(2015)018, arXiv:1508.07774v2[hep-ex]

Elena Petrova work with Mikhail Dubinin

Exclusion limits in the  $(m_{H^+}, \tan \beta)$  parameter space in different MSSM benchmark scenarios are considered with taken into account new radiative corrections induced by dimension-six operators of one-loop resummed MSSM Higgs potential.

- **(**) New areas of parameter spase with low  $\tan \beta$  appear.
- Pelative large values of cross sections for extremely small tan β or m<sub>H<sup>±</sup></sub> ≥ 500 GeV as a rule are forbidden by model independent upper limit.

## Thanks for your attention

Elena Petrova work with Mikhail Dubinin