### Heavy quark physics at ATLAS and CMS



Leonid Gladilin (Moscow State Univ.) on behalf of the ATLAS and CMS Collaborations





QFTHEP 2017, 26.06-03.07 2017, Yaroslavl

Selected recent results

Outline : ATLAS + CMS @ LHC Charm and Beauty meson Production Charmonium and Bottomonium production Mixing and CP violation Rare decays (FCNC) Decays and Spectroscopy Summary

## ATLAS+CMS @ LHC

#### ATLAS : weight : ~ 7000 tons 44m



#### 2010 - 2017

#### 2017





 $L_{max} = 15.5 \times 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$ 



**Dimuon triggers** 

 $L_{int} \approx 60 \text{ fb}^{-1} \text{ per experiment}$ 

### **Charm and Beauty meson Production**



### Charmed meson production @ 7 TeV: $D^{*\pm}$ , $D^{\pm}$ , $D_s^{\pm}$

ATLAS, NP B 907 (2016) 717



## D meson visible x-sections ATLAS, NP B 907 (2016) 717

low-p<sub>T</sub>: 3.5 – 20 GeV

high-p<sub>T</sub>: 20 - 100 GeV

|               | $\sigma^{\rm vis}(D^{*\pm})$ |                      | $\sigma^{\rm vis}(D^{\pm})$ |                     | $\sigma^{\rm vis}(D_s^{*\pm})$ |                    |
|---------------|------------------------------|----------------------|-----------------------------|---------------------|--------------------------------|--------------------|
| Range         | low- $p_{\rm T}$             | $high-p_T$           | low- $p_{\rm T}$            | high- $p_{\rm T}$   | low- $p_{\rm T}$               | $high-p_T$         |
| [units]       | $[\mu b]$                    | [nb]                 | $[\mu b]$                   | [nb]                | $[\mu b]$                      | [nb]               |
| ATLAS         | $331 \pm 36$                 | $988 \pm 100$        | $328\pm34$                  | $888\pm97$          | $160\pm37$                     | $512\pm104$        |
| GM-VFNS       | $340^{+130}_{-150}$          | $1000^{+120}_{-150}$ | $350^{+150}_{-160}$         | $980^{+120}_{-150}$ | $147^{+54}_{-66}$              | $470^{+56}_{-69}$  |
| FONLL         | $202^{+125}_{-79}$           | $753^{+123}_{-104}$  | $174^{+105}_{-66}$          | $617^{+103}_{-86}$  | -                              | -                  |
| POWHEG+PYTHIA | $158^{+179}_{-85}$           | $600^{+300}_{-180}$  | $134^{+148}_{-70}$          | $480^{+240}_{-130}$ | $62^{+64}_{-31}$               | $225^{+114}_{-69}$ |
| POWHEG+HERWIG | $137^{+147}_{-72}$           | $690^{+380}_{-160}$  | $121^{+129}_{-64}$          | $580^{+280}_{-140}$ | $51^{+50}_{-25}$               | $268^{+107}_{-62}$ |
| MC@NLO        | $157^{+125}_{-72}$           | $980^{+460}_{-290}$  | $140^{+112}_{-65}$          | $810^{+390}_{-260}$ | $58^{+42}_{-25}$               | $345^{+175}_{-87}$ |

**GM-VFNS** – developed from "massless" NLO, consider explicitly flavour excitation diagrams, consider fragmentation of light quarks and gluons to *D* mesons

FONLL

- matched NLO+NLL (developed from "massive" NLO)
- **POWHEG+PYTHIA/HERWIG** matched NLO+LL (developed from "massive" NLO)
- MC@NLO (+HERWIG) matched NLO+LL (developed from "massive" NLO)

NNLO is in principle available (Czakon et al.), but not yet numerically stable for masses in the few-GeV range

### $D^{(*)\pm}$ differential x-sections vs $p_T(D^{(*)\pm})$

#### ATLAS, NP B 907 (2016) 717

**CMS PAS HIN-16-001** 



## **GM-VFNS** – agree both in shape and normalization

FONLL, POWHEG, MC@NLO – agree within large theoretical uncertainties

MC@NLO – worst shape description



## $D^{(*)\pm}$ differential x-sections vs $|\eta(D^{(*)\pm})|$

low-p<sub>T</sub>: 3.5 – 20 GeV



**GM-VFNS** – agree both in shape and normalization

FONLL, POWHEG, MC@NLO – agree within large theoretical uncertainties

## $D^{(*)\pm}$ differential x-sections vs $|\eta(D^{(*)\pm})|$

#### high-p<sub>T</sub>: 20 - 100 GeV



**GM-VFNS** – agree both in shape and normalization

FONLL, POWHEG, MC@NLO – agree (?) within large theoretical uncertainties

MC@NLO – worst shape description

## Beauty meson production @ 13 TeV: $B^+ \rightarrow J/\psi K^+$



 $\sigma(B^+) = 14.9 \pm 0.4 \text{ (stat)} \pm 2.0 \text{ (syst)} \pm 0.4 \text{ (lumi)} \mu b$ 

FONLL : 9.9<sup>+3.3</sup>-2.2 μb

below but in agreement within large theor. uncertainties

#### CMS, PLB 771 (2017) 435

 $( 10 < p_T(B^{\pm}) < 17 \quad GeV \&\& |y(B^{\pm})| < 1.45 ) || \\ ( 17 < p_T(B^{\pm}) < 100 \ GeV \&\& |y(B^{\pm})| < 2.1 )$ 

 $N(B^{\pm}) = 3477^{+86}_{-84}$ 

| Sustamatic courses                                                        | Relative          |  |
|---------------------------------------------------------------------------|-------------------|--|
| Systematic sources                                                        | uncertainties (%) |  |
| Muon trigger, identification,                                             | 60 137            |  |
| and reconstruction                                                        | 0.0-13.7          |  |
| Detector alignment                                                        | 2.8               |  |
| B <sup>+</sup> vertex reconstruction                                      | 1.4               |  |
| Size of simulated samples                                                 | 0.5-3.9           |  |
| Track reconstruction efficiency                                           | 3.9               |  |
| $B^+ \rightarrow J/\psi (\rightarrow \mu^+ \mu^-) K^+$ branching fraction | 3.1               |  |
| Model in likelihood fits                                                  | 1.0-6.4           |  |
| Bin-to-bin migration                                                      | 0.4–3.7           |  |
| B <sup>+</sup> kinematic distributions                                    | 0.4 - 10.6        |  |
| Parton distribution functions                                             | 0.1 - 0.7         |  |
| B <sup>+</sup> lifetime                                                   | 0.3               |  |
| Total (excluding the integrated luminosity)                               | 9.1–15.6          |  |
| Integrated luminosity                                                     | 2.7               |  |

### $B^+ \rightarrow J/\psi K^+$ , 13 TeV

#### CMS, PLB 771 (2017) 435



FONLL below the data at low p<sub>T</sub>(B<sup>+</sup>)

Differences are larger at 13 TeV?

### $B^+ \rightarrow J/\psi K^+$ , 13 TeV

#### CMS, PLB 771 (2017) 435



DATA tend to prefer higher values compared to FONLL

Measurements of  $\sigma^{13 \text{ TeV}}/\sigma^{7 \text{ TeV}}$  are of great interest, in particular for PDF constraints (see Cacciari et al., EPJ C 75 (2015) 610)

## **Charmonium and Bottomonium production**



## **Charmonium production**

Non-prompt (from B decays) – probes open b quark production, g fragmentation and B-decay kinematics FONLL, matched NLO+NLL ("massive" NLO + resummation) GM-VFNS ("massless" NLO + mass-dependent terms)

## **Charmonium production**

Non-prompt (from B decays) – probes open b quark production, g fragmentation and B-decay kinematics FONLL, matched NLO+NLL ("massive" NLO + resummation) GM-VFNS ("massless" NLO + mass-dependent terms)

**Prompt** (not from B decays) – probes specific mechanisms of  $Q\bar{Q}$  system production and transformation to a meson



NRQCD: Color Singlet (CS) and Color Octet (CO) terms. Long-distance matrix elements (LDME) determined from experimental data. Color Singlet Model (CSM) – only CS diagrams. Color Evaporation Model (CEM) – only one LDME.

## **Charmonium production**

Non-prompt (from B decays) – probes open b quark production, g ragmentation and B-decay kinematics FONLL, matched NLO+NLL ("massive" NLO + resummation) GM-VFNS ("massless" NLO + mass-dependent terms)

**Prompt** (not from B decays) – probes specific mechanisms of  $Q\bar{Q}$  system production and transformation to a meson



### Onium production @ 13 TeV



### Charmonium production @ 13 TeV: $J/\psi$



#### ATLAS-CONF-2015-030

#### **Non-Prompt Fraction**

$$f_b^{J/\psi} \equiv \frac{pp \to b + X \to J/\psi + X'}{pp \xrightarrow{\text{Inclusive}} J/\psi + X'} = \frac{N_{J/\psi}^{\text{NP}}}{N_{J/\psi}^{\text{NP}} + N_{J/\psi}^{\text{P}}}$$

rises from ~25% till ~60%

No strong dependence from |y| range

No sizeable differences between 7 and 13 TeV results

Larger than at smaller pp and  $p\overline{p}$  energies

### Charmonium production @ 13 TeV



**CMS PAS BPH-15-005** 

**Non-Prompt Fraction** 

J/ψ

rises from ~25% till ~70% flattish above 40 GeV

Ψ(2S)

rises from ~30% till ~70% flattish above 40 GeV

### $\psi(2S) (\rightarrow J/\psi \pi^+ \pi^-)$ , prompt/non-prompt diff. x-sections

ATLAS, JHEP 01 (2017) 117

40

40

FONLL is generally o.k.

50 60 70

50 60 70

 $\psi(2S) p_{T} [GeV]$ 

 $\psi(2S) p_{\tau} [GeV]$ 



- NLO NRQCD is generally o.k.
- CS is too low even at NNLO\*
- new  $k_{\tau}$  factorization predictions (CS + CO) in fair agreement

### X(3872) ( $\rightarrow J/\psi\pi^+\pi^-$ ), 8 TeV, prompt/non-prompt diff. x-sections ATLAS, JHEP 01 (2017) 117



NLO NRQCD (C. Meng et al.),  $\chi_{cI}(2P) + D^0 \overline{D}^{*0}$ , produced dominantly via  $\chi_{cI}(2P)$ , tuned to CMS, is generally o.k.



FONLL, rescaled from  $\psi(2S)$ , with  $f(B \rightarrow X(3872) \rightarrow J/\psi \pi^+\pi^-) = (1.9 \pm 0.8) \times 10^{-4}$ (Artoisenet&Braaten with CDF data) is too high, too hard 20

#### Enhanced B<sub>c</sub> contribution to non-prompt X(3872) production

#### ATLAS, JHEP 01 (2017) 117



#### Enhanced B<sub>c</sub> contribution to non-prompt X(3872) production ?

### Measurement of $b\overline{b} \rightarrow J/\psi \mu^{\pm}$

#### ATLAS, arXiv:1705.03374

#### Probes *bb* production dynamics



#### *τ > 0.25* ps

22

2D fit to  $d_0(\mu)/\sigma(d_0)$  and BDT output

### Measurement of $b\bar{b} \rightarrow J/\psi \mu^{\pm}$

ATLAS, arXiv:1705.03374

Differential x-sections in  $\Delta R$ ,  $\Delta \phi$ ,  $\Delta y$ ,  $y_{boost}$ , Mass,  $p_T$ , M/ $p_T$ ,  $p_T/M$ 

#### Probes small opening angles of bb



### Measurement of $b\bar{b} \rightarrow J/\psi \mu^{\pm}$

#### ATLAS, arXiv:1705.03374

#### Differential x-sections in $\Delta R$ , $\Delta \phi$ , $\Delta y$ , $y_{boost}$ , Mass, $p_T$ , $M/p_T$ , $p_T/M$



MadGraph5\_aMC@NLO+Pythia8 too high at large  $p_T$ 

4-flavour predictions agreebetter than5-flavour predictions at large p<sub>T</sub>

Theor. uncertainties are not yet available

### $J/\psi + J/\psi$ prompt production

Entries / 0.5 mm

10<sup>2</sup>

10

 $10^{-1}$ 

 $10^{-2}$ 

ATLAS

Probes specific mechanisms of cccc system production and transformation to 2 mesons; potentially sensitive to Double Parton Scattering (DPS)



#### ATLAS, EPJ C 77 (2017) 76

### $J/\psi + J/\psi$ prompt production

#### **Data-driven SPS/DPS separation**





 $J/\psi$  mesons from different events

DPS template normalized to data in the DPS-dominant region:  $\Delta y > 1.8 \&\& \Delta \phi < \pi/2$ 

$$w_{\text{DPS}}(\Delta\phi, \ \Delta y) = \frac{N_{\text{DPS}}(\Delta\phi, \ \Delta y)}{N_{\text{Data}}(\Delta\phi, \ \Delta y)}$$

SPS template obtained by subtraction of the DPS template from data

$$w_{\text{SPS}}(\Delta\phi, \ \Delta y) = \frac{N_{\text{SPS}}(\Delta\phi, \ \Delta y)}{N_{\text{Data}}(\Delta\phi, \ \Delta y)}$$

### $J/\psi + J/\psi$ prompt production

### ATLAS, EPJ C 77 (2017) 76 CMS, JHEP 09 (2014) 094



NLO\* SPS (Lansberg, Shao) generally agrees, below at large  $\Delta y$  and m(J/ $\psi$  J/ $\psi$ )

$$\sigma_{\text{eff}} = \frac{1}{2} \frac{\sigma_{\text{J/}\psi} \sigma_{\text{J/}\psi}}{\sigma_{\text{DPS}}^{\text{J/}\psi,\text{J/}\psi}}$$
$$\sigma_{\text{eff}} = 6.3 \pm 1.6 \text{ (stat)} \pm 1.0 \text{ (syst) mb}$$

LHCb (13 TeV,  $J/\psi+J/\psi$ , NLO\* CS) : 10.2 ± 1.0 mb CMS-based ( $\sqrt{s}=7$  TeV,  $J/\psi+J/\psi$ ) : 8.2 ± 2.2 mb

1.....

5

10 15

20

25

 $\sigma_{eff}$  [mb]

30

0

smaller than jet-related  $\sigma_{eff}$  measurements

### $\Upsilon(1S) + \Upsilon(1S)$ production

#### CMS, JHEP 05 (2017) 013

9.5

10

9

8.5



Two estimations of  $\sigma_{eff}$  of DPS:

 $\sigma_{eff} \approx 6.6 \text{ mb}, \sigma_{eff} \approx 2.3 \text{ mb}$ 

- agree with other quarkonium measurements
- smaller than jet-related measurements

11

10.5

M<sup>(2)</sup><sub>uu</sub> [GeV]

# **Υ(nS)** dependence on charged particle multiplicity in pp collisions



#### **CMS PAS BPH-14-009**

#### Clear suppression with increase of multiplicity

No dependence from tracks direction

Connected with the underlying event itself?

(b)

(a)

### **Mixing and CP violation**



The time evolution of B<sub>s</sub> meson mixing is characterized by

- $\checkmark$  the mass difference  $\Delta m_s$  of the heavy (B<sub>H</sub>) and light (B<sub>L</sub>) mass eigenstates
- ✓ the CP-violating mixing phase  $\varphi_s$
- ✓ the width difference of  $\Delta\Gamma_s = \Delta\Gamma_L \Delta\Gamma_H$

Interference between the B<sub>s</sub> decays amplitudes to the CP eigenstates  $J/\psi \varphi$  or via mixing gives rise to a measurable CP violating phase  $\varphi_s$ 



New Physics could modify  $\varphi_s$  and  $\Delta \Gamma_s / \Delta m_s$  If new particles contributes to box diagrams

$$PS \rightarrow VV$$
 decay gives orbital angular  $L = 0$  or 2 are  $CP$ -even  
momentum  $L = 0, 1$  or 2  $L = 1$  is  $CP$ -odd 31







~ 74900 *B*<sup>0</sup><sub>s</sub> mesons

~ 49200 *B*<sup>0</sup><sub>s</sub> mesons

Flavour tagging tuned using  $B^+ \rightarrow J/\psi K^+$ 



| Tagger                                                                                | Efficiency [%]   | Dilution [%]     | Tagging Power [% | ]      |
|---------------------------------------------------------------------------------------|------------------|------------------|------------------|--------|
| Combined $\mu$                                                                        | $4.12\pm0.02$    | $47.4\pm0.2$     | $0.92\pm0.02$    |        |
| Electron                                                                              | $1.19\pm0.01$    | $49.2\pm0.3$     | $0.29\pm0.01$    | ΛΤΙ ΛΟ |
| Segment-tagged $\mu$                                                                  | $1.20\pm0.01$    | $28.6\pm0.2$     | $0.10 \pm 0.01$  | AILA   |
| Jet-charge                                                                            | $13.15\pm0.03$   | $11.85\pm0.03$   | $0.19 \pm 0.01$  |        |
| Total                                                                                 | $19.66 \pm 0.04$ | $27.56 \pm 0.06$ | $1.49 \pm 0.02$  |        |
| $\mathcal{D} = P(B Q) - P(\bar{B} Q) = 2P(B Q) - 1 \qquad T = \epsilon \mathcal{D}^2$ |                  |                  |                  | _      |

 $\mathcal{P}_{tag} = (1.307 \pm 0.031 \,(\text{stat}) \pm 0.007 \,(\text{syst})) \%$ 

 $\mu^{\pm}$ , e<sup>±</sup>, jet-charge

CMS

#### ATLAS, JHEP 08 (2016) 147

CMS, PLB 757 (2016) 97



time-dependent, flavour-tagged angular analysis

~25 free parameters projections are shown

#### Three transversity angles



#### ATLAS, JHEP 08 (2016) 147

| Parameter                                 | Value  | Statistical | Systematic  |
|-------------------------------------------|--------|-------------|-------------|
|                                           |        | uncertainty | uncertainty |
| $\phi_s[\mathrm{rad}]$                    | -0.110 | 0.082       | 0.042       |
| $\Delta \Gamma_s [\mathrm{ps}^{-1}]$      | 0.101  | 0.013       | 0.007       |
| $\Gamma_s [\mathrm{ps}^{-1}]$             | 0.676  | 0.004       | 0.004       |
| $ A_{  }(0) ^2$                           | 0.230  | 0.005       | 0.006       |
| $ A_0(0) ^2$                              | 0.520  | 0.004       | 0.007       |
| $ A_S(0) ^2$                              | 0.097  | 0.008       | 0.022       |
| $\delta_{\perp}  [\mathrm{rad}]$          | 4.50   | 0.45        | 0.30        |
| $\delta_{\parallel}  \mathrm{[rad]}$      | 3.15   | 0.10        | 0.05        |
| $\delta_{\perp} - \delta_S \text{ [rad]}$ | -0.08  | 0.03        | 0.01        |

#### CMS, PLB 757 (2016) 97

| Parameter                            | Fit result                 |  |  |
|--------------------------------------|----------------------------|--|--|
| $\phi_{\rm s}$ [rad]                 | $-0.075 \pm 0.097$         |  |  |
| $\Delta\Gamma_{ m s}[{ m ps}^{-1}]$  | $0.095\pm0.013$            |  |  |
| $ A_0 ^2$                            | $0.510\pm0.005$            |  |  |
| $ A_{S} ^{2}$                        | $0.012^{+0.009}_{-0.007}$  |  |  |
| $ A_{\perp} ^2$                      | $0.243\pm0.008$            |  |  |
| $\delta_{\parallel} \; [{ m rad}]$   | $3.48{}^{+0.07}_{-0.09}$   |  |  |
| $\delta_{S\perp}^{''}$ [rad]         | $0.37  {}^{+0.28}_{-0.12}$ |  |  |
| $\delta_{\perp} \; [{ m rad}]$       | $2.98\pm0.36$              |  |  |
| $c\tau \left[ \mu \mathrm{m}  ight]$ | $447.2\pm2.9$              |  |  |

Good agreement with SM

 $\varphi_{s} = -21 \pm 31 \text{ mrad}$ 

[HFAG Preliminary]

**SM:** 
$$-0.0363^{+0.0016}_{-0.0015}$$
 rad

a lot of room for improvement



#### Precision measurements of B lifetimes in $B \rightarrow J/\psi X$ decays CMS PAS BPH-13-008



 $B_s \rightarrow J/\psi \varphi$ mixture of 2 CP-even ( $\approx B_L$ ) and one CP-odd ( $\approx B_H$ )

 $B_s \rightarrow J/\psi \pi^+ \pi^-$ 0.9240 < m(π<sup>+</sup>π<sup>-</sup>) < 1.0204 GeV, dominated by f<sub>0</sub>(980) CP-odd (≈B<sub>H</sub>)

$$c\tau_{\rm B_s^0} = 443.9 \pm 2.0 \text{ (stat)} \pm 1.2 \text{ (syst)} \ \mu\text{m} (\text{in J}/\psi\phi(1020)),$$
  

$$c\tau_{\rm B_s^0} = 504.3 \pm 10.5 \text{ (stat)} \pm 3.7 \text{ (syst)} \ \mu\text{m} (\text{in J}/\psi\pi^+\pi^-),$$
  

$$\Gamma_{\rm H} = c/c\tau_{\rm B_s^0} = 0.594 \pm 0.012 \text{ (stat)} \pm 0.004 \text{ (syst)} \text{ ps}^{-1} \qquad \text{neglecting CPV}$$

### **Rare Decays (FCNC)**




agree within 2  $\sigma$ 

37

 $B^0 \rightarrow K^{*0} \mu^+ \mu^-$  (FCNC) ATLAS-CONF-2017-023

CMS, PLB 753 (2016) 013

**CMS PAS BPH-15-008** 



5600

m<sub>κπμμ</sub> [MeV]

5.1

5.2

5.3

5.4

5400

5200

 $m(K^{+}\pi^{-}\mu^{+}\mu^{-})$  (GeV) 38

5.5

## $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ (FCNC) ATLAS-CONF-2017-023

CMS, PLB 753 (2016) 013 CMS PAS BPH-15-008



Fair agreement with SM in most distributions/bins

~2.5  $\sigma$  deviation in P<sub>5</sub>' for 4 < q<sup>2</sup> < 6 GeV<sup>2</sup> in ATLAS (similar to LHCb and Belle) 39

# **Decays and Spectroscopy**



### Observation of $B^+ \rightarrow \psi(2S) \varphi(1020) K^+$

CMS, PLB 764 (2017) 66



Can be used in searches for resonances in  $m(\psi(2S)\varphi)$  with more data

CDF, D0, LHCb, CMS and BaBAr reported possible structures in  $m(J/\psi\varphi)$  using  $B^+ \rightarrow J/\psi\varphi(1020)K^+$ 

(140 ± 15) signal events Branching fraction:

 $(4.0 \pm 0.4 \,(\text{stat}) \pm 0.6 \,(\text{syst}) \pm 0.2 \,(\mathcal{B})) \times 10^{-6}$ 

using normalization to  $B^+ \rightarrow \psi(2S)K^+$ 

#### CMS, PLB 734 (2014) 66



 $\Delta m = m(\mu^+ \mu^- K^+ K^-) - m(\mu^+ \mu^-) \qquad 41$ 

# Measurement of $B_c^+ \rightarrow J/\psi D_s^{(*)+}$

### ATLAS, EPJ C 75 (2016) 1



Normalization mode:  $B_c^+ \rightarrow J/\psi \pi^+$ 

$$\mathcal{R}_{D_s^+/\pi^+} = \frac{\mathcal{B}_{B_c^+ \to J/\psi D_s^+}}{\mathcal{B}_{B_c^+ \to J/\psi \pi^+}} = 3.8 \pm 1.1 \text{ (stat.)} \pm 0.4 \text{ (syst.)} \pm 0.2 \text{ (BF)}$$
$$\mathcal{R}_{D_s^{*+}/\pi^+} = \frac{\mathcal{B}_{B_c^+ \to J/\psi D_s^{*+}}}{\mathcal{B}_{B_c^+ \to J/\psi \pi^+}} = 10.4 \pm 3.1 \text{ (stat.)} \pm 1.5 \text{ (syst.)} \pm 0.6 \text{ (BF)}$$
$$\mathcal{R}_{D_s^{*+}/D_s^+} = \frac{\mathcal{B}_{B_c^+ \to J/\psi D_s^{*+}}}{\mathcal{B}_{B_c^+ \to J/\psi D_s^{*+}}} = 2.8^{+1.2}_{-0.8} \text{ (stat.)} \pm 0.3 \text{ (syst.)}$$
$$\Gamma_{++}/\Gamma = 0.38 \pm 0.23 \text{ (stat.)} \pm 0.07 \text{ (syst.)}$$

Reasonable agreement with LHCb

Some predictions are below but within 2  $\sigma$ 

Experimental precision can (will) be improved!



### Precision measurement of $B_c$ lifetime

#### **CMS PAS BPH-13-008**



$$c\tau_{\rm B_c^+} = 162.3 \pm 8.2 \text{ (stat)} \pm 4.7 \text{ (syst)} \pm 0.1 (\tau_{\rm B^+}) \ \mu m_{\rm B_c^+}$$

 $\frac{N_{\mathbf{B}_{c}^{+}}(t)}{N_{\mathbf{B}^{+}}(t)} = \mathcal{R}(t) = \frac{\epsilon_{\mathbf{B}_{c}^{+}}(t)r(t)\otimes E_{\mathbf{B}_{c}^{+}}(t)}{\epsilon_{\mathbf{B}^{+}}(t)r(t)\otimes E_{\mathbf{B}^{+}}(t)}$ 

In agreement with the LHCb measurements Higher previous Tevatron measurements

Precise value is important to constraint new physics behind  $B \rightarrow D^{(*)} \tau v$  anomalies

| VALUE  | (10 <sup>-12</sup> s) |              | DOCUMENT ID            |             | TECN | COMMENT                            |
|--------|-----------------------|--------------|------------------------|-------------|------|------------------------------------|
| 0.507  | ±0.009                | OUR EVALUATI | ON                     |             |      |                                    |
| 0.507  | ±0.009                | OUR AVERAGE  |                        |             |      |                                    |
| 0.5134 | $\pm 0.0110$          | $\pm 0.0057$ | <sup>1,2</sup> AAIJ    | 15G         | LHCB | <i>pp</i> at 7, 8 TeV              |
| 0.509  | $\pm 0.008$           | $\pm 0.012$  | <sup>3</sup> AAIJ      | 14G         | LHCB | <i>pp</i> at 8 TeV                 |
| 0.452  | $\pm 0.048$           | $\pm 0.027$  | <sup>2</sup> AALTONEN  | 13          | CDF  | <i>р</i> рат 1.96 ТеV              |
| 0.448  | $^{+0.038}_{-0.036}$  | $\pm 0.032$  | <sup>4</sup> ABAZOV    | 09н         | D0   | p <del>p</del> at 1.96 TeV         |
| 0.463  | $^{+0.073}_{-0.065}$  | $\pm 0.036$  | <sup>4</sup> ABULENCIA | <b>06</b> 0 | CDF  | p <del>p</del> at 1.96 <b>T</b> eV |
| 0.46   | $^{+0.18}_{-0.16}$    | ±0.03        | <sup>4</sup> ABE       | 98M         | CDF  | <i>р</i> <u>р</u> 1.8 ТеV          |

Search for *X*(5568)  $\rightarrow$   $B_{s}\pi^{\pm}$ 

**CMS PAS BPH-16-002** 



# **Summary : main messages**



Charmed meson x-sections: GM-VFNS agree in shape and norm. Beauty meson x-sections: FONLL generally agrees Charmonium x-sections, Prompt: NLO NRQCD generally agrees



CP violation: precise measurements  $\phi_s$  and  $\Delta\Gamma_s$  good agreement with SM, higher precision is needed

 $\begin{array}{c} & & B_{(s)}{}^{0} \rightarrow \mu^{+}\mu^{-}: \text{ observed by CMS+LHCb, agree with SM} \\ & & \text{ATLAS agrees with CMS+LHCb and SM on the level of 2 } \sigma \\ & & B^{0} \rightarrow K^{*0} \ \mu^{+}\mu^{-}: \text{ generally agree with SM, tensions on the level of 2.5 } \sigma \text{ in one bin for ATLAS (similar to LHCb and Belle)} \end{array}$ 



**X(5568)**  $\rightarrow B_s \pi^{\pm}$ : no signal in CMS data,  $\rho_X^{CMS} < 3.9 \%$  at 95% CL in agreement with LHCb and contradiction to D0



New exciting results for summer/fall conferences

# **Back-up Slides**

# D\*<sup>±</sup> signals and visible x-sections



### Extrapolation with FONLL, total $c\bar{c}$ x-section

$$\begin{aligned} \sigma_{tot}(D^{(*)}) &= \sigma_{pp \to c\bar{c}X \to D^{(*)}X'} = \sigma_{vis}^{DATA}(D^{(*)}) \ (1 - f_{b\bar{b}}) \ f_{extr}^{NLO,c\bar{c}} \\ f_{extr}^{NLO,c\bar{c}} &\sim 14 - 16 \ (relatively stable) \\ \sigma_{c\bar{c}} &= \sigma_{tot}(D^{(*)}) / f(c \to D^{(*)}) \ / \ 2. \\ \text{weighted mean from } D^{*\pm} \ \text{and } D^{\pm} : \\ \sigma_{c\bar{c}}^{\text{tot}} &= 8.6 \pm 0.3 \ (\text{stat}) \pm 0.7 \ (\text{syst}) \pm 0.3 \ (\text{lum}) \pm 0.2 \ (\text{ff})_{-3.4}^{+3.8} \ (\text{extr}) \ \text{mb} \ (\text{ATLAS}) \end{aligned}$$

$$3.5 < p_{T}(D) < 20 \ \text{GeV} \\ \text{and } |\eta(D)| < 2.1. \\ 1 < p_{T}(D) < 24 \ \text{GeV} \\ \text{and } |y(D)| < 0.5. \end{aligned}$$

### Extrapolation with POWHEG+PYTHIA, fragm. ratios

$$\gamma_{s/d} = \frac{\sigma_{c\bar{c}}^{\text{tot}}(D^+)}{\sigma_{c\bar{c}}^{\text{tot}}(D^{*+}) + \sigma_{c\bar{c}}^{\text{tot}}(D^+) - \sigma_{c\bar{c}}^{\text{tot}}(D^{*+}) \cdot (1 - \mathcal{B}_{D^{*+} \rightarrow D^0 \pi^+})} = \frac{\sigma_{c\bar{c}}^{\text{tot}}(D^+)}{\sigma_{c\bar{c}}^{\text{tot}}(D^+) + \sigma_{c\bar{c}}^{\text{tot}}(D^{*+}) \cdot \mathcal{B}_{D^{*+} \rightarrow D^0 \pi^+}}$$

$$P_v^d = \frac{\sigma_{c\bar{c}}^{\rm tot}(D^{*+})}{\sigma_{c\bar{c}}^{\rm tot}(D^{*+}) + \sigma_{c\bar{c}}^{\rm tot}(D^{+}) - \sigma_{c\bar{c}}^{\rm tot}(D^{*+}) \cdot (1 - \mathcal{B}_{D^{*+} \to D^0 \pi^+})} = \frac{\sigma_{c\bar{c}}^{\rm tot}(D^{*+})}{\sigma_{c\bar{c}}^{\rm tot}(D^{+}) + \sigma_{c\bar{c}}^{\rm tot}(D^{*+}) \cdot \mathcal{B}_{D^{*+} \to D^0 \pi^+}}$$

$$\begin{split} \gamma_{s/d} &= 0.26 \pm 0.05 \,(\text{stat}) \pm 0.02 \,(\text{syst}) \pm 0.02 \,(\text{br}) \pm 0.01 \,(\text{extr}) \,, \\ P_v^d &= 0.56 \pm 0.03 \,(\text{stat}) \pm 0.01 \,(\text{syst}) \pm 0.01 \,(\text{br}) \pm 0.02 \,(\text{extr}) \,. \end{split}$$

$$\gamma_{s/d}^{\text{LEP}} = \frac{f(c \to D_s^+)}{f(c \to D^+) + f(c \to D^{*+}) \cdot \mathcal{B}_{D^{*+} \to D^0 \pi^+}} = 0.24 \pm 0.02 \pm 0.01 \,(\text{br})$$

$$P_{\rm v}^{\rm LEP} = \frac{f(c \to D^{*+})}{f(c \to D^{+}) + f(c \to D^{*+}) \cdot \mathcal{B}_{D^{*+} \to D^0 \pi^+}} = 0.61 \pm 0.02 \pm 0.01 \,({\rm br})$$

# Beauty meson production: $B^+ \rightarrow J/\psi K^+$ , 13 TeV

ATLAS-CONF-2015-064



| Fit                       | $B^{\pm}$ mass [MeV] | Fit error [MeV]                                  |
|---------------------------|----------------------|--------------------------------------------------|
| Default Fit               | 5279.31              | $0.11 \; (stat.)$                                |
| $L_{xy} > 0.2 \text{ mm}$ | 5279.34              | $0.09 \; ({\rm stat.})$                          |
| World Average fit         | 5279.29              | 0.15                                             |
| LHCb                      | 5279.38              | $0.11 \text{ (stat.) } \pm 0.33 \text{ (syst.)}$ |

# Beauty meson production: $B^+ \rightarrow J/\psi K^+$ , 7 TeV



FONLL provides reasonable description although with large theor. uncertainties

Central predictions are somewhat harder

The predictions are normalized to  $f(b \rightarrow B^+) = 40.1 \pm 1.3\%$  [PDG]

#### LHCb, Phys. Lett. 118 (2017) 052002



# $\psi(2S) \rightarrow J/\psi (\rightarrow \mu^+ \mu^-) \pi^+ \pi^-$ , non-prompt diff. x-sections



- generally, reasonable description by FONLL and GM-VFNS predictions are harder than data
- NLO with "wrong" (FONLL) fragmentation is even harder

# $\psi(2S) \rightarrow J/\psi (\rightarrow \mu^+ \mu^-) \pi^+ \pi^-$ , prompt diff. x-sections



- NLO NRQCD is generally o.k.
- CS is too low even at NNLO\*
- CEM is somewhat too hard

## $m(\pi + \pi -)$ in $\psi(2S)$ , $X(3872) \rightarrow J/\psi \pi^+ \pi^-$ , 8 TeV



Voloshin-Zakharov distribution

#### CMS: JHEP 04 (2013) 154

## X(3872) Production via decays to $J/\psi \pi^+\pi^-$



 $B^0 \rightarrow J/\psi K^0 \langle K^{*0} results$ 

ATLAS, JHEP 06 (2016) 081



 $\Delta \Gamma_d / \Gamma_d = (-0.1 \pm 1.1 \text{ (stat.)} \pm 0.9 \text{ (syst.)}) \times 10^{-2}$ 

 $s \times \Delta \Gamma_d / \Gamma_d = -0.002 \pm 0.010$ 

from DELPHI, BABAR, Belle, ATLAS and LHCb  $W + J/\psi (\rightarrow \mu^+ \mu^-)$ 



#### ATLAS, JHEP 04 (2014), 172



58

## $W + J/\psi (\rightarrow \mu^+ \mu^-)$ , $\Delta \phi$ distr. and rates w.r.t. inclusive W



### $Z + J/\psi$ production (1<sup>st</sup> obs.) ATLAS, EPJ C 75 (2015) 229

Prompt component probes mechanisms of cc̄ system production and transformation to a meson at high scale; potentially sensitive to Double Parton Scattering (DPS)





### $Z + J/\psi (\rightarrow \mu^+ \mu^-), \Delta \phi$ distributions and DPS



61

# $Z + J/\psi (\rightarrow \mu^+ \mu^-)$ , integrated and diff. cross sections



Observation of  $\Lambda_b \rightarrow \psi(2S) \Lambda^0$ 

#### ATLAS, PLB 751 (2015) 63



Is it really  $\Lambda_b \rightarrow \psi(2S) \Lambda^0$ ?

#### ATLAS, PLB 751 (2015) 63

 $(\operatorname{not} \Lambda_b \to \mu^+ \mu^- p \ \pi^-, \ \mu^+ \mu^- \Lambda^0, \ \psi(2S) \ p \ \pi^-)$ 



Cascade fit w/o constraint on charmonium mass

 $N(\psi(2S)) = 724 \pm 45$ 

in events within ±3  $\sigma$  of  $m(\Lambda_b)_{PDG}$ 

Cascade fit w/o constraint on  $\Lambda^0$  mass

 $N(\Lambda^0) = 702 \pm 38$ 

in events within ±3  $\sigma$  of  $m(\Lambda_b)_{PDG}$ 

### Measurement of $\Gamma(\Lambda_b \rightarrow \psi(2S) \Lambda^0) / \Gamma(\Lambda_b \rightarrow J/\psi \Lambda^0)$

### ATLAS, PLB 751 (2015) 63

 $\frac{\Gamma(\Lambda_b^0 \rightarrow \psi(2S)\Lambda^0)}{\Gamma(\Lambda_b^0 \rightarrow J/\psi \Lambda^0)} = 0.501 \pm 0.033(\text{stat}) \pm 0.016(\text{syst}) \pm 0.011(\mathcal{B})$ 

Lies in the range 0.5-0.8 measured for the branching ratios of analogous B meson decays [PDG].

The covariant quark model prediction (0.8  $\pm$  0.1), T. Gutsche et al., PRD 88 (2013) 114018 T. Gutsche et al., PRD 92 (2015) 114008 is quite above (~3  $\sigma$ )

**Other calculations?** 

 $\Lambda_b \rightarrow J/\psi \ (\mu + \mu -) \ \Lambda^0 \ (p\pi^-)$ 



Parity violation is a well-known feature of weak interactions. It is **not maximal in decays of hadrons** due to the presence of **strongly coupled spectator quarks**  Four possible helicity amplitudes:

| Amplitude  | $\lambda_{J/\psi}$ | $\lambda_{\Lambda}$ |
|------------|--------------------|---------------------|
| <b>a</b> + | 0                  | 1/2                 |
| a_         | 0                  | -1/2                |
| $b_+$      | -1                 | -1/2                |
| <b>b</b> _ | 1                  | 1/2                 |

ATLAS, PRD 89 (2014) 092009

**CMS PAS BPH-15-005** 

 $\begin{aligned} |a_{+}|^{2} + |a_{-}|^{2} + |b_{+}|^{2} + |b_{-}|^{2} &= 1. \\ \text{Parity violating asymmetry parameter} \\ \alpha_{\rm b} &= |a_{+}|^{2} - |a_{-}|^{2} + |b_{+}|^{2} - |b_{-}|^{2} \end{aligned}$ 



$$\Lambda_b \rightarrow J/\psi$$
 ( $\mu + \mu -$ )  $\Lambda^0$  ( $p\pi^-$ )

Full angular PDF

$$w(\Omega, \vec{A}, P) = \frac{1}{(4\pi)^3} \sum_{i=0}^{19} f_{1i}(\vec{A}) f_{2i}(P, \alpha_{\Lambda}) F_i(\Omega)$$

 $f_{1i}$ : bilinear functions of the four helicity amplitudes A $f_{2i}$ : functions of polarization P of  $\Lambda_b$  and decay parameter  $\alpha_{\Lambda}$  of  $\Lambda$ , where  $\alpha_{\Lambda} = 0.642 \pm 0.013$  $F_i$ : functions of decay angles  $\Omega(\theta, \phi, \theta_1, \phi_1, \theta_2, \phi_2)$ 

| i  | fu                                                                                  | <b>f</b> 2i        | F <sub>i</sub>                                                              |
|----|-------------------------------------------------------------------------------------|--------------------|-----------------------------------------------------------------------------|
| 0  | a₊a₊* + a_a_* + b₊b₊* + b_b_*                                                       | I.                 | I                                                                           |
| 2  | a <sub>+</sub> a <sub>+</sub> * – a_a_* + b <sub>+</sub> b <sub>+</sub> * – b_b_*   | $\alpha_{\Lambda}$ | $\cos \theta_{1}$                                                           |
| 4  | - a <sub>+</sub> a <sub>+</sub> * - a_a_* + b <sub>+</sub> b <sub>+</sub> * + b_b_* | 1                  | $\frac{1}{2}$ ( 3 cos <sup>2</sup> $\theta_2$ – 1 )                         |
| 6  | - a <sub>+</sub> a <sub>+</sub> * + a_a_* - b <sub>+</sub> b <sub>+</sub> * +b_b_*  | $\alpha_{\Lambda}$ | $\frac{1}{2}$ ( 3 cos <sup>2</sup> $\theta_2$ – I ) cos $\theta_1$          |
| 18 | 3/√2 Re( b_a_* – a₊b₊* )                                                            | $\alpha_{\Lambda}$ | $\sin \theta_1 \sin \theta_2 \cos \theta_2 \cos(\phi_1 + \phi_2)$           |
| 19 | $-3/\sqrt{2} Im(b_a_* - a_b_*)$                                                     | $\alpha_{\Lambda}$ | $\sin \theta_{1} \sin \theta_{2} \cos \theta_{2} \sin(\phi_{1} + \phi_{2})$ |

$$\chi^{2} = \sum_{i} \sum_{i} \left( \left\langle F_{i} \right\rangle^{\exp} - \left\langle F_{i} \right\rangle \right) V_{ij}^{-1} \left( \left\langle F_{j} \right\rangle^{\exp} - \left\langle F_{j} \right\rangle \right)$$

as no solution with real parameters



 $\Lambda_{b} \rightarrow J/\psi (\mu + \mu -) \Lambda^{0} (p\pi^{-})$ 

| Results                                                                                                                                                     | ATLAS                                                                                                                                                                                                                                    |       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| $lpha_b=0.30\pm0.1$                                                                                                                                         | $6(\mathrm{stat})\pm0.06(\mathrm{stat})$                                                                                                                                                                                                 | syst) |
| $ert a_+ ert = 0.17^{+0.12}_{-0.12} \ ert a ert = 0.59^{+0.00}_{-0.02} \ ert b_+ ert = 0.79^{+0.04}_{-0.02} \ ert b ert = 0.08^{+0.12}_{-0.02} \ ert b ert$ | $egin{aligned} &2_7(	ext{stat}) \pm 0.09(	ext{syst}), \ &6_7(	ext{stat}) \pm 0.03(	ext{syst}), \ &4_5(	ext{stat}) \pm 0.02(	ext{syst}), \ &4_5(	ext{stat}) \pm 0.02(	ext{syst}), \ &8_8(	ext{stat}) \pm 0.06(	ext{syst}). \end{aligned}$ | J     |

 $✓ \alpha_b$  value consistent with LHCb: 0.05 ± 0.17(stat) ± 0.07(syst) (PLB 724 (2013) 27) ✓ intermediate between pQCD (-(0.14 -0.17)) and HQET (0.78) predictions

✓ large  $|a_{-}|$  and  $|b_{+}|$  suggest negative helicity for  $\Lambda^{0}$ 

| Amplitude  | $\lambda_{J/\psi}$ | $\lambda_{\Lambda}$ |
|------------|--------------------|---------------------|
| <b>a</b> + | 0                  | 1/2                 |
| a_         | 0                  | -1/2                |
| $b_+$      | -1                 | -1/2                |
| <b>b</b> _ | 1                  | 1/2                 |

#### ATLAS, PRD 89 (2014) 092009 CMS PAS BPH-15-005

#### CMS

$$\begin{split} P &= 0.00 \pm 0.06(stat) \pm 0.02(syst), \\ \alpha_1 &= 0.12 \pm 0.13(stat) \pm 0.06(syst), \\ \alpha_b &= -\alpha_1 \\ \alpha_2 &= -0.93 \pm 0.04(stat) \pm 0.04(syst), \\ \gamma_0 &= -0.46 \pm 0.07(stat) \pm 0.04(syst), \\ |T_{-0}|^2 &= 0.51 \pm 0.03(stat) \pm 0.02(syst), \\ |T_{+0}|^2 &= -0.02 \pm 0.03(stat) \pm 0.02(syst), \\ |T_{--}|^2 &= 0.46 \pm 0.02(stat) \pm 0.02(syst), \\ |T_{++}|^2 &= 0.05 \pm 0.04(stat) \pm 0.02(syst). \end{split}$$

## Study of $B_c^+ \rightarrow J/\psi D_s^{(*)+}$

### ATLAS, EPJ C 75 (2016) 1







Spectator

Colour-suppressed

Annihilation



 $p_{T}(B_{c}) > 15 \text{ GeV}$   $|\eta(B_{c})| < 2$ 

m(K<sup>+</sup>K<sup>-</sup>) within ±7 MeV of m( $\varphi$ )<sub>PDG</sub>

2-vertex cascade fit with 2 mass constraints (J/ $\psi$  and D<sub>s</sub>)

in case of  $D_s^* \rightarrow D_s \pi^0 / \gamma : \pi^0 / \gamma$  escapes detection 3 helicity amplitudes for PS  $\rightarrow$  V + V decay:  $A_{00}, A_{++}, A_{--}$ 

Is it really  $B_c^+ \rightarrow J/\psi D_s^{(*)+}$ ?

### ATLAS, EPJ C 75 (2016) 1

(not  $B_c^{+} \rightarrow \mu^+ \mu^- \varphi \pi^+$ ,  $\mu^+ \mu^- D_s^{+}$ ,  $J/\psi \varphi \pi^+$ )



Cascade fit w/o mass constraints

events with 5.9 <  $m(J/\psi D_{s}^{+})$  < 6.4 GeV

 $N(J/\psi) = 568 \pm 28$ 

a lot of  $J/\psi$  in background

N(D,<sup>+</sup>) = 175 ± 36

non-significantly above  $N(B_c^+ \rightarrow J/\psi D_s^+) + N(B_c^+ \rightarrow J/\psi D_s^{*+})$ 

#### Study of X(3872) (and $\psi(2S)$ ) $\rightarrow J/\psi \pi^+\pi^-$ ATLAS, JHEP 01 (2017) 117



470 k of ψ(2S) 30 k of X(3872)

10 < p<sub>T</sub>(ψ(2S)/X(3872)) < 70 GeV  $|y(\psi(2S)/X(3872))| < 0.75$ 



3.0

ATLAS vs=8 TeV, 11.4 fb<sup>-1</sup>

3.2

3.4

m(μ⁺μ⁻) [GeV]

### Observation of excited $B_c (\rightarrow B_c \pi^+ \pi^-)$



ATLAS, PRL 113 (2014) 212004

Large  $B_c$  family is expected although only ground state has been known until today

 $B_c^{\pm}(2S)$  6835–6917 MeV  $2S/1S \simeq 0.6$   $2^1S_0 \rightarrow 1^1S_0 + \pi\pi$ 



 $p_{\tau}(\pi) > 4 \text{ GeV}, m(J/\psi)$  constrained to PDG


## Observation of excited $B_c (\rightarrow B_c \pi^+ \pi^-)$ ATLAS, PRL 113 (2014) 212004

 $p_{\tau}(\pi^{\pm}) > 400 \text{ MeV}, m(J/\psi)$  constrained to PDG



Significance from  $\Delta \ln L$  of pseudo-experiments: 5.4  $\sigma$  (local) 5.2  $\sigma$  ("look elsewhere")

 $Q = 288.3 \pm 3.5 \pm 4.1 \text{ MeV}$ M = 6842 ± 4 ± 5 MeV

Both mass value and decay mode agree with expectations for  $B_c^{\pm}(2S)$ 

## Measurements of

## CMS, JHEP 01 (2015) 063



$$R_{\rm c/u} = [0.48 \pm 0.05 \,(\text{stat}) \pm 0.03 \,(\text{syst}) \pm 0.05 \,(\tau_{\rm B_c})]\%$$

differs from the LHCb value

 $\begin{array}{l} [0.68\pm 0.10\,({\rm stat})\pm 0.03\,({\rm syst})\pm 0.05\,(\tau_{\rm B_c})]\% \\ p_{\rm T} > 4\,{\rm GeV},\, 2.5\,<\,\eta\,<\,4.5 \end{array}$ 

agrees with the LHCb value

$$R_{
m B_c} = 2.55 \pm 0.80 \, (
m stat) \pm 0.33 \, (
m syst)^{+0.04}_{-0.01} \, ( au_{
m B_c})$$