The XXIII International Workshop High Energy Physics and Quantum Field Theory June 26– July 3, 2017 Yaroslavl, Russia

A. SHAIKHIEV (INR RAS, MOSCOW)

ON BEHALF OF THE NA62 COLLABORATION

THE NA62 EXPERIMENT AT CERN: STATUS AND RECENT RESULTS

THE NA62 COLLABORATION

~30 institutes, ~200 participants form:

Birmingham, Bratislava, Bristol, Bucharest, CERN, Dubna, Fairfax, Ferrara, Firenze, Frascati, Glasgow, Liverpool, Louvain, Mainz, Merced, Moscow, Napoli, Perugia, Pisa, Prague, Protvino, Roma I, Roma II, San Luis Potosi, Sofia, Torino, TRIUMF, Vancouver UBC

NA62 experiment is located at north area(NA) of CERN. Protons are extracted from the SPS with p=400 GeV/c producing a secondary beam of hadrons (~6% are kaons).

Main goal is to measure the $K^+ \rightarrow \pi^+ vv$ branching fraction with high precision

MOTIVATION

- Ultra rare kaon decay with very clean theoretical prediction within the SM framework: $BR(K^+ \rightarrow \pi^+ \nu \bar{\nu}) = (9.11 \pm 0.72) \times 10^{-11}$ Buras et al., JHEP 1511 (2015) 033
- The only experimental measurement from E787/E949 has large uncertainty: PRL101 (2008) 191802

 $BR(K^+ \to \pi^+ \nu \bar{\nu}) = (1.73^{+1.15}_{-1.05}) \times 10^{-10}$

Sensitive to new physics effects... (see next slide)

BEYOND THE SM

- Models with general LH and RH NP couplings
- Models obeying CMFV
- Constraint from ϵ_K if only RH or LH couplings are present

THE NA62 DETECTOR

- Kaon ID and direction (KTAG, GTK, CHANTI)
- Pion ID and direction (STRAW, CHOD, RICH)
- Photon veto (LAV, LKr, IRC, SAC)
- Muon veto (MUV1,2,3)

DATA COLLECTION

- 2015: minimum bias (~1% intensity) and test data: most systems commissioned and meet the design requirement
- 2016: 3 May 14 Nov. (~40% of nominal intensity).
 Focused on the main decay mode K⁺→π⁺vv, but can be used also for other rare/forbidden decays: K⁺→πll (l=e,µ), π⁰→vv, K⁺→l⁺N, K⁺→π⁺A',...
- 2017: data taking started in May
- 2018: data taking approved

THE STRATEGY

NA62 is expected to collect O(100) SM events with <20% background in three years of data taking \Rightarrow must have order of 10¹² background rejection:

- Isolate signal decays based on missing mass (high rejection by kinematics)
- Use veto to reject other background

SIGNAL REGIONS

- Design kinematical resolution on m_{miss}^2 has been achieved (10⁻³ GeV²/c⁴)
- Measured kinematical background suppression: 6x10⁻⁴ (K⁺→π⁺π⁰), 3x10⁻⁴ (K⁺→μ⁺v)
- 0² Further background suppression:
 - PID (calorimeters/cherenkov detectors): μ suppression < 10⁻⁷
 - Hermetic photon veto: $\pi 0 \rightarrow \gamma \gamma$ suppression < 10^{-7}

PRELIMINARY RESULTS

- ▶ 5% of 2016 data: 2.3x10¹⁰ kaon decays
- No events found in the signal regions
- Expect 1.3 SM events from full 2016 data set
- Preliminary statements on background: B/S < 0.9</p>
- Analysis in progress to increase signal acceptance and improve background suppression

2016 DATA BEYOND THE "GOLDEN" MODE

- Dedicated triggers for 3-track decays with leptons
- Expect to improve world limits on LFV/LNV K⁺ and π⁰ decays

SEARCH FOR HEAVY NEUTRINO WITH 2015 DATA

WHY DO WE NEED HYLL?Neutrino
oscillationBaryon asymmetry of
the UniverseDark matter and dark energyImage: Image: Image:

 ν MSM: SM + 3 right-handed neutrinos m₁ ~ 10 keV m_{2,3}~ 100 MeV - 100 GeV There is new physics beyond the Standard Model, but we don't know exactly what is it

T. Asaka and M. Shaposhnikov Phys. Lett. B620, 17 (2005).

HOW TO FIND HNL?

• <u>Meson decays</u>

Search for extra peaks in lepton distributions (momentum, energy, missing mass, ...)

$$\Gamma(M^+ \to l^+ \nu_H) = \rho \times \Gamma(M^+ \to l^+ \nu_l) \times |U_{lH}|^2$$

R.E. Shrock, Phys. Rev. D24, 1232 (1981)

• <u>Heavy neutrino decays</u>

"Nothing"
$$\rightarrow$$
 leptons and hadrons
 $\nu_H \rightarrow e^+ e^- \nu_{\alpha}, \nu_H \rightarrow \mu^{\pm} e^{\mp} \nu_{\alpha}, \nu_H \rightarrow \mu^+ \mu^- \nu_{\alpha},$
 $\nu_H \rightarrow \pi^0 \nu, \pi e, \pi \mu, K e, K \mu, ...$

DATA SAMPLE

- Minimum bias (~1% intensity) in 2015
- ▶ Kaon decays in FV: (3.01±0.11)x10⁸
- Beam tracker is not available: kaon momentum is estimated as beam average

PEAK SEARCH

- Scan region 170<m<448 MeV/c², mass step = 1 MeV/c²
- Signal search window for each mass hypothesis $\pm 1.5\sigma$
- Background estimate: polynomial fit outside signal window
- Background stat. errors are estimated with MC
- Upper limit for each mass is obtained from numbers of observed and expected events and their uncertainties

Local signal significance never exceeds 3o: no heavy neutrino signal is observed

RESULTS

CONCLUSION

- Detector is fully operated since Sept.2016 and data is taking now @50% of nominal intensity
- ~10¹¹ kaon decays has already collected in 2016
- The K⁺→π⁺vv is on-going and O(1) SM events are expected from total 2016 data sample
- First physics result from 2015 minimum bias data: search for heavy neutrino production in K⁺→e⁺N decays in mass range 170–448 MeV/c²: no observed signal, set upper limits at 10⁻⁶– 10⁻⁷ level