

Production and spectroscopy in heavy flavour

n Maevskiy, SINP MSU alf of the ATLAS collaboration

ATLATLAS FTHEP'2017 Yaroslavl, Russia

June 26 – July 3, 2017

A. Maevskiy, SINP MSU

QFTHEP'2017, Yaroslavl, Ares

Outline

- Measurement of *b*-hadron pair production at $\sqrt{s} = 8$ TeV
- Measurement of the prompt J/ψ pair production at $\sqrt{s} = 8$ TeV
- Production measurements of $\psi(2S)$ and X(3872) at $\sqrt{s} = 8$ TeV
- Non-prompt J/ψ production fraction at $\sqrt{s} = 13$ TeV
- B[±] mass reconstruction at 13 TeV

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/BPhysPublicResults

Measurement of b-hadron pair production

arXiv:1705.03374 (submitted to JHEP)

- Three muons in final state:
 - $b \rightarrow J/\psi (\mu\mu) + X$ and $b \rightarrow \mu + Y$
- Trigger:
 - Two muons of opposite charge
 - Same production vertex
 - *p*_T > 4 GeV
 - |η| < 2.4
 - $2.5 < m_{\mu\mu} < 4.3 \text{ GeV}$ $L^{\text{int}} = 11.4 \text{ fb}^{-1} (\sqrt{s} = 8 \text{ TeV})$
- Fiducial volume:
 - *p*_T(μ) > 6 GeV
 - $|\eta(\mu^{J/\psi})| < 2.3$
 - $|\eta(\mu^{\text{single}})| < 2.5$
- J/ψ yield extracted with a simultaneous mass-lifetime fit

- Single μ signal extracted by fitting:
 - Transverse impact parameter significance $S(d_0) = d_0 / \sigma(d_0)$
 - BDT output. BDT trained to discriminate signal and fake muons using
 - track deflection,
 - Inner Detector vs Muon Spectrometer momentum balance
 - absolute $|\eta|$
- for $\tau > 0.25$ mm/c (\Rightarrow simpler single μ background)

Results

Total cross section: $\sigma(B(\rightarrow J/\psi[\rightarrow \mu^+\mu^-] + X)B(\rightarrow \mu + X)) = 17.7 \pm 0.1(\text{stat}) \pm 2.0(\text{syst})$

- Several g splitting kernels considered for PYTHIA8. Best description with p_{T} -based kernel
- Bestoverall agreement with 4flavour MADGRAPH5_AMC@NLO +PYTHIA8
- No generator can well-describe all the kinematic properties

Low ΔR region probed!

ΔŠ

1.6 1.4 1.2 MC/Data

0.8 0.6

1.5

0.5 1.6 1.4 1.2

Prompt J/ψ pair production

Eur. Phys. J. C77 (2017) 76

- Total of 1210 events
- Main backgrounds:
 - non- J/ψ events (continuum background)
 - non-prompt J/ψ -
 - J/ψ from different primary vertices (pile-up background)

Data-driven approach to extract DPS fraction

«Prompt» = produced directly in the hard scatter including contributions of feed-down from higher charmonium states

- 2 *muons* with $p_T > 4$ GeV and 2.5 < $m_{\mu\mu} < 4.3$ GeV
- $L^{\text{int}} = 11.4 \pm 0.3 \text{ fb}^{-1}$
- Both J/ψ reconstructed in $\mu\mu$ channel
 - Selection:

 J/ψ trigger

- $|\eta^{\mu}| < 2.3 \text{ and } p_{T^{\mu}} > 2.5 \text{ GeV}$
- 2.8 < m_{µµ} < 3.4 GeV
- $|y^{J/\psi}| < 2.1 \text{ and } p_T^{J/\psi} > 8.5 \text{ GeV}$
- track quality, muon quality, etc.
- distance between decays along the beam axis < 1.2 mm

Separated with $m(J/\psi_1) \ge m(J/\psi_2)$ fit Separated with $L_{xy}(J/\psi_1) \ge L_{xy}(J/\psi_2)$ fit

Subtracted using *d_z* distribution

 d_z — distance between the two J/ψ decay vertices along the beam direction

A. Maevskiy, SINP MSU

A. Maevskiy, SINP MSU

QFTHEP'2017, Yaroslavl, Ausol

ATLAS ATLAS ($\sqrt{s} = 8$ TeV, $J/\psi + J/\psi$, 2016) DØ ($\sqrt{s} = 1.96$ TeV, J/ ψ + J/ ψ , 2014) DØ ($\sqrt{s} = 1.96$ TeV, J/ $\psi + \Upsilon$, 2016) LHCb ($\sqrt{s} = 7\&8 \text{ TeV}, \Upsilon(1S) + D^{0,+}, 2015$) LHCb ($\sqrt{s} = 7$ TeV, $J/\psi + \Lambda_c^+$, 2012) LHCb ($\sqrt{s} = 7$ TeV, J/ ψ + D⁺_s, 2012) LHCb ($\sqrt{s} = 7$ TeV, J/ ψ + D⁺, 2012) LHCb ($\sqrt{s} = 7$ TeV, J/ ψ + D⁰, 2012) ATLAS ($\sqrt{s} = 7$ TeV, 4 jets, 2016) CDF ($\sqrt{s} = 1.8$ TeV, 4 jets, 1993) UA2 ($\sqrt{s} = 630$ GeV, 4 jets, 1991) AFS ($\sqrt{s} = 63$ GeV, 4 jets, 1986) DØ ($\sqrt{s} = 1.96$ TeV, $2\gamma + 2$ jets, 2016) DØ ($\sqrt{s} = 1.96$ TeV, $\gamma + 3$ jets, 2014) DØ ($\sqrt{s} = 1.96$ TeV, $\gamma + b/c + 2$ jets, 2014) DØ ($\sqrt{s} = 1.96$ TeV, $\gamma + 3$ jets, 2010) CDF ($\sqrt{s} = 1.8$ TeV, $\gamma + 3$ jets, 1997) ATLAS ($\sqrt{s} = 8$ TeV, $Z + J/\psi$, 2015) CMS ($\sqrt{s} = 7$ TeV, W + 2 jets, 2014) ATLAS ($\sqrt{s} = 7$ TeV, W + 2 jets, 2013) 0 5 10 15 20 25 30

Some newer results not included in the plot:

CMS + Lansberg, Shao ($\sqrt{s} = 7$ TeV, J/ ψ + J/ ψ , 2014, JHEP09(2014)094, 10.1016/j.physletb.2015.10.083)

8.2 ± 2.2 mb

CMS (√s = 8 TeV, Y(1*S*) + Y(1*S*), 2016, <u>JHEP05(2017)013</u>) ≈ 6.6 mb if *f*_{DPS} ≈ 10% ≈ 2.2 mb if *f*_{DPS} ≈ 30%

LHCb ($\sqrt{s} = 13 \text{ TeV}, J/\psi + J/\psi, 2017, arXiv:1612.07451}$)

model-dependent
estimations in range
10.0 – 12.5 mb

Experiment (energy, final state, year)

A. Maevskiy, SINP MSU

 σ_{eff} [mb]

QFTHEP'2017, Yaroslavl,

Production measurements of $\psi(2S)$ and X(3872)

JHEP01(2017)117

- Trigger on a pair of muons successfully fitted to a common vertex
- Selection:
 - $|\eta^{\mu}| < 2.3$ and $p_{T}^{\mu} > 4$ GeV
 - $m_{\mu\mu}$ must fall into $m_{J/\psi} \pm 120$ MeV
 - $|\eta^{\pi}| < 2.4$ and $p_{T}^{\pi} > 0.6$ GeV
 - $|y(J|\psi\pi^+\pi^-)| < 0.75$
 - 10 < *p*_T(*J*/ψ*π*⁺*π*⁻) < 70 GeV
 - $\Delta R(J/\psi, \pi^{\pm}) < 0.5$
 - $m(J/\psi\pi^+\pi^-) m(J/\psi) m(\pi^+\pi^-) < 0.3 \text{ GeV}$

Non-prompt J/ψ production fraction at $\sqrt{s} = 13$ TeV ATLAS-CONF-2015-030

12

- μ pair fitted into a common vertex
- Two-dimensional fit
 - $m_{\mu\mu}$
 - Pseudo-proper decay time $\tau = L_{xy} \cdot \frac{m_{J/\psi}^{PDG}}{n_{T}}$
- Five components
 - 2 signal (prompt and non-prompt)
 - 3 background (prompt and non-prompt + fake muons)

A. Maevskiy, SINP MSU

6.4 pb⁻¹ of 13 TeV data

pseudo-proper decay time

- No apparent y-dependence
- Fraction increases with pT
- No significant change between $\sqrt{s} = 7$ TeV and $\sqrt{s} = 13$ TeV
- Noticeable difference with measurements at lower energies

B^{\pm} mass reconstruction in $B^{\pm} \rightarrow J/\psi K^{\pm}$

ATLAS-CONF-2015-064

- 3.2 fb⁻¹ of 13 TeV data
- unbinned maximum likelihood fit with 4 components

$$\ln \mathcal{L} = \sum_{i=1}^{N} \{ \ln(f_{s} \cdot \mathcal{F}_{s}(m_{i})) + f_{s} \cdot f_{Bx} \cdot \mathcal{F}_{Bx}(m_{i}) + f_{s} \cdot f_{B\pi} \cdot \mathcal{F}_{B\pi}(m_{i}) + (1 - f_{s} \cdot (1 + f_{B\pi} + f_{B\pi}))\mathcal{F}_{bkg}(m_{i}) \}$$

- Signal double Gauss
- Combinatorial background linear function
- Partially reconstructed decays $B \rightarrow J/\psi X$ hyperbolic tangent
- Resonance background $B^{\pm} \rightarrow J/\psi \pi^{\pm}$ — Gauss (fixed shape)
- Parameters determined from MC:
 - final-state selection as signal
 - trigger prescale weights

QFTHEP'2017, Yaroslavl

- kinematic weights (Bp_T and y dependent), derived from MC and data (sideband-subtraction)
- Relative fraction ($f_{B_{\pi}} = 3.7\%$), from acceptance (MC) and external branching ratio measurement (LHCb)

A. Maevskiy, SINP MSU

Default fit

Fit with *L*_{*xy*} > 0.20mm

Fit	B^{\pm} mass [MeV]	Fit error [MeV]
Default Fit	5279.31	0.11 (stat.)
$L_{xy} > 0.2 \text{ mm}$	5279.34	0.09 (stat.)
World Average fit	5279.29	0.15
LHCb	5279.38	$0.11 \text{ (stat.) } \pm 0.33 \text{ (syst.)}$

- Good stability of the mass fit over rapidity (deviations less than 0.1%)
 - Excellent ID momentum calibration
- ATLAS result is in agreement with PDG and LHCPD
- Systematic uncertainty estimated to be 0.25 MeV. Not full:
 - Momentum scale and vertexing uncertainties not included

Lifetime resolution

A. Maevskiy, SINP MSU

QFTHEP'2017, Yaroslavl, Arisa

Summary

A number of heavy flavour ATLAS results presented:

- A measurement of *b*-hadron pair production
 - Predictions for $3-\mu$ cross-section compared to the data
 - Best overall agreement with **4-flavour MADGRAPH5_AMC@NLO+PYTHIA8**
- Prompt J/ψ pair production
 - A model with LO DPS + NLO-colour singlet SPS describes the data reasonably well
- $\psi(2S)$ and X(3872) production
 - ψ(2S) production agrees well with NLO NRQCD and FONLL predictions for prompt and non-prompt production, respectively
 - Prompt X(3872) agrees well with CMS and NLO NRQCD
 - FONLL prediction overestimates the non-prompt X(3872) production
- Non-prompt J/ψ production fraction and B^{\pm} mass reconstruction
 - One of the first Run-2 results
 - Excellent detector performance

Thank you

Backup slides

DPS extraction

- Purely data-driven approach
- Assumptions made:
 - In the DPS the two J/ψ are produced independently
 - DPS dominates and SPS is negligible in the region: $\Delta y \ge 1.8$; $\Delta \phi \le \pi/2$
- Data templates obtained by combining J/ψ from two different random events
- Templates normalised to data in region $\Delta y \ge 1.8$; $\Delta \phi \le \pi/2$
- Subtracted to obtain SPS templates
- SPS and DPS weight obtained as function of Δy and $\Delta \phi$

QFTHEP'2017, Yaroslavl

