BSM searches in ATLAS

Prepared by: Nicola Orlando (The University of Hong Kong) Presented by: Alison Elliot (The University of Victoria)

for the ATLAS Collaboration

ATLAS

EXPERIMENT

University of Victoria

Fingerprints of BSM physics

Energy budget of the universe

Neutrino mass theories not experimentally verified Not enough CP violation to account for matter-antimatter asymmetry in the universe Fine tuning in the Higgs and Yukawa sectors Inderstanding

Yaroslavl Russia

2017,

QFTHEP2017 | June 26-July 3,

Looking for BSM in ATLAS

Searches for exotic particles

- Different models solve: naturalness problem, dark-matter candidates, extended symmetries, heavy neutrinos, ...
- Characterised by multiple signatures, multiple interpretations
- Searches for supersymmetry (SUSY)
 - Solves naturalness problem, has dark-matter candidates
 - Characterised by high (low) missing transverse energy for R-parity conserving (violating) models
- Searches for new Higgs bosons (falls in both previous categories)
 - Targeting signatures inspired by models extending the Higgs sector

Clear resonant signature, high precision knowledge of the main background

W'/Z' searches in leptonic final states

References

Dilepton resonance search <u>ATLAS-CONF-2017-027</u> Lepton + missing energy resonance search <u>EXOT-2016-06</u>

W'/Z' searches in leptonic final states

Testing several benchmarks as well as simplified models with narrow-width signal hypotheses

Clear and spectacular signature, smooth background controlled with unbinned models Angular correlations between the jets provide extra handles on signal-to-background y separation

Di-jet resonances

References

Di-jet analysis arXiv:1703.09127

Di-jet resonance search with b-jets ATLAS-CONF-2016-060

Clear and spectacular signature, smooth background controlled with unbinned models Angular correlations between the jets provide extra handles on signal-to-background separation

Di-jet resonances

References

Di-jet analysis <u>arXiv:1703.09127</u>

Di-jet resonance search with b-jets ATLAS-CONF-2016-060

Di-jet resonances

Di-jet resonate search based on **b-tagged jets** Several benchmark analyses, including generic signals with gaussian shaped mjj peak

Searches for heavy resonances in several decay channels: WW, ZZ, WZ, WH, ZH

Expecting bosons with high boost

Exploits extensively boosted vector boson and Higgs boson tagging

Interpretation: decays of heavy spin-0 spin-1, spin-2 particles with small widths (up to ~10%)

Di-boson resonances

See talk by Andrey Ryzhov today

References

WH and ZH qqbb resonance search <u>ATLAS-CONF-2017-018</u> WW/WZ/ZZ hadronic resonance search <u>ATLAS-CONF-2016-055</u> WW/WZ lvqq resonance search <u>ATLAS-CONF-2016-062</u> WZ/ZZ II/w + qq resonance search <u>ATLAS-CONF-2016-082</u>

Di-boson resonances fully hadronic

Di-boson resonances semi-leptonic

- Here focusing on vector-like top quark (T)
- Final states typically enriched in third generation quarks, with or without high missing transverse energy and boosted objects
- Decays in 2nd and 1st generation fermions and down-type vector-like quark not considered
- Searches using simultaneously multiple regions and shape analyses

Searches for vector like quarks

References

Pair production of vector-like top quarks in I+jets+missing energy <u>arXiv:1705.10751</u> Search in tt + heavy flavour in I+jets+missing energy <u>ATLAS-CONF-2016-104</u> Pair production of vector like quarks in I+jets (including b-jet+W-jet) <u>ATLAS-CONF-2016-102</u>

Searches for vector like quarks

Searches for vector like quarks

Summary exotics

Α	TLAS Exotics S	earch	es* -	95%	6 CL	Exclusion		ATLA	AS Preliminar
Sta	atus: August 2016						$\int \mathcal{L} dt =$	(3.2 - 20.3) fb ⁻¹	$\sqrt{s} = 8, 13 \text{ Te}$
	Model	<i>l</i> ,γ	Jets†	${\pmb E}_{\sf T}^{\sf miss}$	∫£ dt[fb	¹] Limit	·		Reference
Extra dimensions	ADD $G_{KK} + g/q$ ADD non-resonant $\ell\ell$ ADD QBH $\rightarrow \ell q$ ADD QBH ADD BH high $\sum p_T$ ADD BH multijet RS1 $G_{KK} \rightarrow \ell\ell$ RS1 $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow HH \rightarrow bbbb$ Bulk RS $g_{KK} \rightarrow tt$ 2UED / RPP	$\begin{array}{c} - \\ 2 \ e, \mu \\ 1 \ e, \mu \\ - \\ \geq 1 \ e, \mu \\ 2 \ e, \mu \\ 2 \ \gamma \\ 1 \ e, \mu \\ - \\ 1 \ e, \mu \\ 1 \ e, \mu \end{array}$	$\geq 1 j$ $-$ $1 j$ $2 j$ $\geq 2 j$ $\geq 3 j$ $-$ $1 J$ $4 b$ $\geq 1 b, \geq 1 J/$ $\geq 2 b, \geq 4$	Yes - - - Yes 2j Yes j Yes	3.2 20.3 20.3 15.7 3.2 3.6 20.3 3.2 13.2 13.3 20.3 3.2	M _D Ms Mth Mth Mth G _{KK} mass G _{KK} mass G _{KK} mass G _{KK} mass S G _{KK} mass KK mass	6.58 TeV 4.7 TeV 5.2 TeV 8.7 TeV 8.7 TeV 8.2 TeV 9.55 TeV 2.68 TeV 3.2 TeV 1.24 TeV GeV 2.2 TeV 1.46 TeV	$\begin{array}{l} n=2 \\ n=3 \; \text{HLZ} \\ n=6 \\ n=6 \\ n=6, M_D=3 \; \text{TeV, rot BH} \\ n=6, M_D=3 \; \text{TeV, rot BH} \\ k/\overline{M}_{Pl}=0.1 \\ k/\overline{M}_{Pl}=0.1 \\ k/\overline{M}_{Pl}=1.0 \\ k/\overline{M}_{Pl}=1.0 \\ \text{BR}=0.925 \\ \text{Tier (1,1), BR}(A^{(1,1)} \rightarrow tt)=1 \end{array}$	1604.07773 1407.2410 1311.2006 ATLAS-CONF-2016-06 1606.02265 1512.02586 1405.4123 1606.03833 ATLAS-CONF-2016-06 ATLAS-CONF-2016-04 1505.07018 ATLAS-CONF-2016-01
Gauge bosons	$\begin{array}{l} \text{SSM } Z' \to \ell\ell \\ \text{SSM } Z' \to \tau\tau \\ \text{Leptophobic } Z' \to bb \\ \text{SSM } W' \to \ell\nu \\ \text{HVT } W' \to WZ \to qq\gamma\nu \text{ model } h \\ \text{HVT } W' \to WZ \to qqqq \text{ model } h \\ \text{HVT } V' \to WH/ZH \text{ model } B \\ \text{LRSM } W'_R \to tb \\ \text{LRSM } W'_R \to tb \\ \text{Cl } qqqq \end{array}$	$2 e, \mu$ 2τ $-$ $1 e, \mu$ $A 0 e, \mu$ $B -$ multi-channe $1 e, \mu$ $0 e, \mu$ $-$	- 2 b - 1 J 2 J el 2 b, 0-1 j ≥ 1 b, 1 J 2 j	- Yes Yes - Yes -	13.3 19.5 3.2 13.3 13.2 15.5 3.2 20.3 20.3 15.7	Z' mass Z' mass Z' mass W' mass W' mass W' mass V' mass W' mass W' mass A	4.05 TeV 2.02 TeV 1.5 TeV 4.74 TeV 2.4 TeV 3.0 TeV 2.31 TeV 1.92 TeV 1.76 TeV	$g_V = 1$ $g_V = 3$ $g_V = 3$ 19.9 TeV $\eta_{LL} = -1$	ATLAS-CONF-2016-04 1502.07177 1603.08791 ATLAS-CONF-2016-06 ATLAS-CONF-2016-08 ATLAS-CONF-2016-05 1607.05621 1410.4103 1408.0886 ATLAS-CONF-2016-06
OM C	Cl <i>llqq</i> Cl <i>uutt</i> Axial-vector mediator (Dirac DM) Axial-vector mediator (Dirac DM)	$2 e, \mu$ $2(SS)/\geq 3 e, \mu$ $0 e, \mu$ $0 e, \mu = 1 \gamma$	$\mu \ge 1 \text{ b, } \ge 1 \text{ j}$ $\ge 1 \text{ j}$ 1 i	Yes Yes	3.2 20.3 3.2 3.2	Λ Λ m _A	4.9 TeV 1.0 TeV	25.2 TeV $\eta_{LL} = -1$ $ C_{RR} = 1$ $g_q=0.25, g_{\chi}=1.0, m(\chi) < 250 \text{ GeV}$ $g_{\chi}=0.25, g_{\chi}=1.0, m(\chi) < 150 \text{ GeV}$	1607.03669 1504.04605 1604.07773 1604.01306
ra r	$ZZ_{\chi\chi}$ EFT (Dirac DM) Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen	0 e, μ 2 e 2 μ 1 e, μ	$1 J, \leq 1 j$ $\geq 2 j$ $\geq 2 j$ $\geq 1 b, \geq 3 j$	Yes - Yes	3.2 3.2 3.2 20.3	M. 550 GeV LQ mass 10 LQ mass 11 LQ mass 640 GeV	1.1 TeV .05 TeV	$m(\chi) < 150 \text{ GeV}$ $\beta = 1$ $\beta = 1$ $\beta = 0$	ATLAS-CONF-2015-08 1605.06035 1605.06035 1508.04735
quarks	$\begin{array}{c} VLQ\ TT \to Ht + X\\ VLQ\ YY \to Wb + X\\ VLQ\ BB \to Hb + X\\ VLQ\ BB \to Zb + X\\ VLQ\ QQ \to WqWq\\ VLQ\ T_{5/3}\ T_{5/3} \to WtWt \end{array}$	1 <i>e</i> , μ 1 <i>e</i> , μ 1 <i>e</i> , μ 2/≥3 <i>e</i> , μ 1 <i>e</i> , μ 2(SS)/≥3 <i>e</i> , μ	$ \begin{array}{c} \geq 2 \ \text{b}, \geq 3 \\ \geq 1 \ \text{b}, \geq 3 \\ \geq 2 \ \text{b}, \geq 3 \\ \geq 2/\geq 1 \ \text{b} \\ \geq 4 \ \text{j} \\ \mu \geq 1 \ \text{b}, \geq 1 \ \text{j} \end{array} $	j Yes j Yes j Yes - Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 3.2	T mass 855 Y mass 770 G B mass 735 Ge B mass 755 Ge Q mass 690 GeV T _{5/3} mass 99	GeV eV V eV eV 60 GeV	T in (T,B) doublet Y in (B,Y) doublet isospin singlet B in (B,Y) doublet	1505.04306 1505.04306 1505.04306 1409.5500 1509.04261 ATLAS-CONF-2016-03
Excited fermions	Excited quark $q^* \rightarrow q\gamma$ Excited quark $q^* \rightarrow qg$ Excited quark $b^* \rightarrow bg$ Excited quark $b^* \rightarrow Wt$ Excited lepton ℓ^* Excited lepton γ^*	1 γ - 1 or 2 e, μ 3 e, μ 3 e, μ, τ	1 j 2 j 1 b, 1 j 1 b, 2-0 j - -	- - Yes -	3.2 15.7 8.8 20.3 20.3 20.3	q* mass g* mass b* mass b* mass ℓ* mass ℓ* mass	4.4 TeV 5.6 TeV 2.3 TeV 1.5 TeV 3.0 TeV 1.6 TeV	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ $f_g = f_L = f_R = 1$ $\Lambda = 3.0 \text{ TeV}$ $\Lambda = 1.6 \text{ TeV}$	1512.05910 ATLAS-CONF-2016-06 ATLAS-CONF-2016-06 1510.02664 1411.2921 1411.2921
Other	LSTC $a_T \rightarrow W\gamma$ LRSM Majorana ν Higgs triplet $H^{\pm\pm} \rightarrow ee$ Higgs triplet $H^{\pm\pm} \rightarrow \ell\tau$ Monotop (non-res prod) Multi-charged particles Magnetic monopoles	1 e, μ, 1 γ 2 e, μ 2 e (SS) 3 e, μ, τ 1 e, μ - -	- 2 j - 1 b - -	Yes - Yes -	20.3 20.3 13.9 20.3 20.3 20.3 20.3 7.0	ar mass 96 N ⁰ mass H ^{±±} mass 570 GeV H ^{±±} mass 400 GeV spin-1 invisible particle mass 657 GeV multi-charged particle mass 785 G monopole mass 785 G	0 GeV 2.0 TeV eV 1.34 TeV	$m(W_R) = 2.4$ TeV, no mixing DY production, BR $(H_L^{\pm\pm} \rightarrow ee)=1$ DY production, BR $(H_L^{\pm\pm} \rightarrow \ell\tau)=1$ $a_{non-res} = 0.2$ DY production, $ q = 5e$ DY production, $ g = 1g_D$, spin 1/2	1407.8150 1506.06020 ATLAS-CONF-2016-05 1411.2921 1410.5404 1504.04188 1509.08059

*Only a selection of the available mass limits on new states or phenomena is shown. Lower bounds are specified only when explicitly not excluded. †Small-radius (large-radius) jets are denoted by the letter j (J).

- Considers several production modes and decay channels, here focusing on:
- Production modes: gluon-fusion, b-associated, top-associated
- Decays: pairs of photons, taus, top-quarks, tau-leptons

Interpretation in 2HDM or simplified scenarios MSSM-inspired Low mass constraints dominated by Standard Model Higgs boson coupling measurement Weak constraints for m_H > 2 m_{top}

*

Searches for exotic neutral Higgs bosons

See talk by Damian Alvarez Piqueras

References

Search for scalar diphoton resonances <u>ATLAS-CONF-2016-059</u> Search for MSSM Higgs in tau-tau resonances <u>ATLAS-CONF-2016-085</u> Search for scalar A/H to top quark pair (8 TeV) <u>ATLAS-CONF-2016-073</u>

Other searches for exotic neutral Higgs bosons

Search for $H \rightarrow \tau \tau$ in gluon fusion and b-associated production

Excludes a wide region of the parameter space in hMSSM

Search for H→tt in tt-associated production

Probes low tanβ 2HDM benchmarks Overcomes the large interference with the Standard Model background observed for gluon fusion H→tt searches

Other searches for exotic neutral Higgs bosons

- **Strategy** based on the clear expect topology
- High ET photons, mass resolution between 2.3 GeV to 15 GeV in the mass range between 0.2 to 2 TeV
- Reanalysed 2015 data lead to a 3.40 local significance excess at 730 GeV
- No significant excess in 2016 data

Observed CL_s limit

Expected CL_s limit

1000

Expected $\pm 1\sigma$

Expected $\pm 2\sigma$

Maximum global excess in the combined 2015+2016 dataset is below 1 o

ATLAS Preliminary

 $\sqrt{s} = 13 \text{ TeV}, 15.4 \text{ fb}^{-1}$

2000

m_x [GeV]

Spin-0 Selection

 $\Gamma_x/m_x = 10\%$

1500

 $X \rightarrow \gamma \gamma$, $\Gamma_x / m_x = 10 \%$

1500

2000

2500

m_x [GeV]

1000

500

n

95% CL Upper Limit on $\sigma_{
m fid}$ × BR [fb]

 10^{2}

10

 10^{-1}

500

Events / 20 GeV

ATLAS Preliminary

18

Data

Spin-0 Selection

√s = 13 TeV, 15.4 fb⁻¹

Background-only fit

2500

Searches for charged Higgs bosons

References

Search for charged higgs in t+b channel <u>ATLAS-CONF-2016-089</u> Search for charged higgs in tag + jets channel <u>ATLAS-CONF-2016-088</u>

Searches for charged Higgs bosons

Standard Model hh rate is expected to not to be observable at LHC with the current dataset due to the small cross section and negative interference between the production modes→σ(hh)~33 fb

21

BSM can be tested for <u>Non-resonant</u> production (via anomalous trilinear coupling) and <u>Resonant production</u> of new particles

Anomalous di-Higgs searches

References

search for di-higgs to bbbb <u>ATLAS-CONF-2016-049</u> search for di-higgs to bbyy <u>ATLAS-CONF-2016-004</u>

Anomalous di-Higgs searches

SUSY electroweak production

See talk by Huajie Cheng

References

SUSY EW with 2 or 3 leptons in final state <u>ATLAS-CONF-2017-039</u> SUSY EW charginos and neutralinos search with taus in final state <u>ATLAS-CONF-2017-035</u>

SUSY electroweak production

Direct stop and sbottom searches

References

Search for top squark pairs with two leptons <u>ATLAS-CONF-2017-034</u> Search for a top squark with jets + missing energy <u>ATLAS-CONF-2017-020</u> Search for top squark pairs with lepton + jet + missing energy <u>ATLAS-CONF-2017-037</u> Search for top and bottom squarks with b-jets and missing energy <u>ATLAS-CONF-2017-038</u> Search for top squark pairs with H or Z + missing energy <u>arXiv:1706.03986</u>

Direct stop and sbottom searches

Structures in the limits dictated by the phase space for producing on-shell Ws and tops

Stop 0/2 leptons

Several discriminating variables are used to separate different decay chains from the background Several signal regions are defined for 2/3/4 body decays

Sbottom

About 20 discriminating variables used to define nine signal regions Background controlled in more than 20 control and validation regions

Direct stop and sbottom searches

Stop 1 lepton

Multiple analyses with multiple signal interpretations, including Dark Matter produced in association with top-quarks Using classic **cut-and-count** method as well as **shape fits** Multivariate approach used to cover compressed regions Several dedicated analysis techniques, including reconstruction of soft-lepton and hadronic top-quark decays

SUSY strong production

RPV SUSY

0 leptons, high jet multiplicity

Other searches based on very high jet multiplicities (up to 11) and mass of boosted hadronic top-quark decays Targets both **RPV and RPC gluino pair** production

Non standard searches for long lived BSM particles (SUSY, dark-sector, ..)→Very dedicated strategies (triggers, topologies, reconstruction)

SUSY Long lived chargino nearly mass degenerate with a neutralino LSP Disappearing track signature Analysis is optimised for low chargino lifetimes (~2ns)→Exploits track-segments reconstructed in the inner-tracker layers

Long lived particles

References

Search for long-lived charginos through disappearing tracks <u>ATLAS-CONF-2017-017</u> Search for long-lived neutral particles to lepton-jets <u>ATLAS-CONF-2016-042</u> Search for long-lived particles with displaced vertices and missing energy <u>ATLAS-CONF-2017-026</u>

ig lived particles

----- Expected

10

 τ [ns]

1400 GeV aluino-pair production

2000 GeV gluino-pair production

1

 10^{-1}

2γ_d+X

SUSY summary

A M	ATLAS Preliminary $\sqrt{s} = 7, 8, 13$ TeV							
	Model	e, μ, τ, γ	Jets	$E_{ m T}^{ m miss}$	∫ <i>L dt</i> [fb	¹] Mass limit	$\sqrt{s} = 7, 8 \text{ TeV}$ $\sqrt{s} = 13 \text{ TeV}$	Reference
Inclusive Searches	$ \begin{array}{l} \text{MSUGRA/CMSSM} \\ \bar{q}\bar{q}, \bar{q} \rightarrow q \tilde{\chi}_{1}^{0} \\ \bar{q}\bar{q}, \bar{q} \rightarrow q \tilde{\chi}_{1}^{0} (\text{compressed}) \\ \bar{g}\bar{s}, \bar{g} \rightarrow q \bar{q} \tilde{\chi}_{1}^{0} \\ \bar{g}\bar{s}, \bar{g} \rightarrow q \bar{q} \tilde{\chi}_{1}^{0} \\ \bar{g}\bar{s}, \bar{g} \rightarrow q q (\ell \ell / \nu \gamma \tilde{\chi}_{1}^{0} \\ \bar{g}\bar{s}, \bar{g} \rightarrow q q (\ell \ell / \nu \gamma \tilde{\chi}_{1}^{0} \\ \bar{g}\bar{s}, \bar{g} \rightarrow q q (\ell \ell / \nu \gamma \tilde{\chi}_{1}^{0} \\ \bar{g}\bar{s}, \bar{g} \rightarrow q q (\ell \ell / \nu \gamma \tilde{\chi}_{1}^{0} \\ \bar{g}\bar{s}, \bar{g} \rightarrow q q (\ell \ell / \nu \gamma \tilde{\chi}_{1}^{0} \\ \bar{g}\bar{s}, \bar{g} \rightarrow q q (\ell \ell / \nu \gamma \tilde{\chi}_{1}^{0} \\ \bar{g}\bar{s}, \bar{g} \rightarrow q q (\ell \ell / \nu \gamma \tilde{\chi}_{1}^{0} \\ \bar{g}\bar{s}, \bar{g} \rightarrow q q (\ell \ell / \nu \gamma \tilde{\chi}_{1}^{0} \\ \bar{g}\bar{s}, \bar{g} \rightarrow q q (\ell \ell / \nu \gamma \tilde{\chi}_{1}^{0} \\ \bar{g}\bar{s}, \bar{g} \rightarrow q q (\ell \ell / \nu \gamma \tilde{\chi}_{1}^{0} \\ \bar{g}\bar{s}, \bar{g} \rightarrow q q (\ell \ell / \nu \gamma \tilde{\chi}_{1}^{0} \\ \bar{g}\bar{s}, \bar{g} \rightarrow q q (\ell \ell / \nu \gamma \tilde{\chi}_{1}^{0} \\ \bar{g}\bar{s}, \bar{g} \rightarrow q q (\ell \ell / \nu \gamma \tilde{\chi}_{1}^{0} \\ \bar{g}\bar{s}, \bar{g} \rightarrow q q (\ell \ell / \nu \gamma \tilde{\chi}_{1}^{0} \\ \bar{g}\bar{s}, \bar{g} \rightarrow q q (\ell \ell / \nu \gamma \tilde{\chi}_{1}^{0} \\ \bar{g}\bar{s}, \bar{g} \rightarrow q (\ell \ell / \nu \gamma \tilde{\chi}_{1}^{0} \\ \bar{g}\bar{s}, \bar{g} \rightarrow q q (\ell \ell / \nu \gamma \tilde{\chi}_{1}^{0} \\ \bar{g}\bar{s}, \bar{g} \rightarrow q q (\ell \ell / \nu \gamma \tilde{\chi}_{1}^{0} \\ \bar{g}\bar{s}, \bar{g} \rightarrow q q (\ell \ell / \nu \gamma \tilde{\chi}_{1}^{0} \\ \bar{g}\bar{s}, \bar{g} \rightarrow q q (\ell \ell / \nu \gamma \tilde{\chi}_{1}^{0} \\ \bar{g}\bar{s}, \bar{g} \rightarrow q q (\ell \ell / \nu \gamma \tilde{\chi}_{1}^{0} \\ \bar{g}\bar{s}, \bar{g} \rightarrow q q (\ell \ell / \nu \gamma \tilde{\chi}_{1}^{0} \\ \bar{g}\bar{s}, \bar{g} \rightarrow q q (\ell \ell / \nu \gamma \tilde{\chi}_{1}^{0} \\ \bar{g}\bar{s}, \bar{g} \rightarrow q q (\ell \ell / \nu \gamma \tilde{\chi}_{1}^{0} \\ \bar{g}\bar{s}, \bar{g} \rightarrow q q (\ell \ell / \nu \gamma \tilde{\chi}_{1}^{0} \\ \bar{s} \rightarrow q (\ell \ell / \nu \gamma \tilde{\chi}_{1}^{0} \\ \bar{s} \rightarrow q (\ell \ell / \nu \gamma \tilde{\chi}_{1}^{0} \\ \bar{s} \rightarrow q (\ell \ell / \nu \gamma \tilde{\chi}_{1}^{0} \\ \bar{s} \rightarrow q (\ell \ell / \nu \gamma \tilde{\chi}_{1}^{0} \\ \bar{s} \rightarrow q (\ell \ell / \nu \gamma \tilde{\chi}_{1}^{0} \\ \bar{s} \rightarrow q (\ell / \ell / \nu \gamma \tilde{\chi}_{1}^{0} \\ \bar{s} \rightarrow q (\ell / \ell / \bar{\chi}_{1}^{0} \\ \bar{s} \rightarrow q (\ell / \ell / \bar{\chi}_{1}^{0} \\ \bar{s} \rightarrow q (\ell / \ell / \bar{\chi}_{1}^{0} \\ \bar{s} \rightarrow q (\ell / \ell / \bar{\chi}_{1}^{0} \\ \bar{s} \rightarrow q (\ell / \ell / \bar{\chi}_{1}^{0} \\ \bar{s} \rightarrow q (\ell / \ell / \bar{\chi}_{1}^{0} \\ \bar{s} \rightarrow q (\ell / \ell / \bar{\chi}_{1}^{0}) \\ \bar{s} \rightarrow q (\ell / \ell / \bar{\chi}_{1}^{0}) \\ \bar{s} \rightarrow q (\ell / \ell / \bar{\chi}_{1}^{0}) \\ \bar{s} \rightarrow q (\ell / \ell / \bar{\chi}_{1}^{0}) \\ \bar{s} \rightarrow q (\ell / \ell / \bar{\chi}_{1}^{0}) \\ \bar{s} \rightarrow q (\ell / \ell / \bar{\chi}_{1}^{0}) \\ \bar{s} \rightarrow q (\ell / \ell / \bar{\chi}_{1}^{0}) \\ \bar{s} \rightarrow q (\ell / \ell / \bar{\chi}_{1}^{0}$	$\begin{array}{c} 0 - 3 \ e, \mu / 1 - 2 \ \tau & 2 \\ 0 \\ mono-jet \\ 0 \\ 3 \ e, \mu \\ 0 \\ 1 - 2 \ \tau + 0 - 1 \ \ell \\ 2 \ \gamma \\ \gamma \\ 2 \ e, \mu \ (Z) \\ 0 \end{array}$	2-10 jets/3 / 2-6 jets 1-3 jets 2-6 jets 2-6 jets 4 jets 7-11 jets 0-2 jets - 1 <i>b</i> 2 jets 2 jets 2 jets mono-jet	 b Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 	20.3 36.1 36.1 36.1 36.1 36.1 3.2 3.2 20.3 13.3 20.3 20.3	q. ž q. g. g. <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>1507.05525 ATLAS-CONF-2017-022 1604.07773 ATLAS-CONF-2017-022 ATLAS-CONF-2017-022 ATLAS-CONF-2017-030 ATLAS-CONF-2017-033 1607.05979 1606.09150 1507.05493 ATLAS-CONF-2016-066 1503.03290 1502.01518</td>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1507.05525 ATLAS-CONF-2017-022 1604.07773 ATLAS-CONF-2017-022 ATLAS-CONF-2017-022 ATLAS-CONF-2017-030 ATLAS-CONF-2017-033 1607.05979 1606.09150 1507.05493 ATLAS-CONF-2016-066 1503.03290 1502.01518
3 ^{ra} gen. § med.	$ \begin{array}{l} \tilde{g}\tilde{g}, \tilde{g} \rightarrow b \bar{b} \tilde{\chi}_1^0 \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow t \bar{t} \tilde{\chi}_1^0 \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow b \bar{t} \tilde{\chi}_1^+ \end{array} $	0 0-1 <i>e</i> , μ 0-1 <i>e</i> , μ	3 b 3 b 3 b	Yes Yes Yes	36.1 36.1 20.1	<i>§</i> <i>§</i> <i>§</i> 1	1.92 TeV m(\tilde{V}_1^0)<600 GeV 1.97 TeV m(\tilde{V}_1^0)<200 GeV	ATLAS-CONF-2017-021 ATLAS-CONF-2017-021 1407.0600
3 ^{ra} gen. squarks direct production	$ \begin{split} \tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \to b \tilde{\chi}_1^0 \\ \tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \to t \tilde{\chi}_1^+ \\ \tilde{r}_1 \tilde{t}_1, \tilde{t}_1 \to b \tilde{\chi}_1^+ \\ \tilde{r}_1 \tilde{t}_1, \tilde{t}_1 \to b \tilde{\chi}_1^0 \text{ or } t \tilde{\chi}_1^0 \\ \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \to c \tilde{\chi}_1^0 \\ \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \to c \tilde{\chi}_1^0 \\ \tilde{t}_1 \tilde{t}_1 (natural GMSB) \\ \tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \to \tilde{t}_1 + Z \\ \tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \to \tilde{t}_1 + h \end{split} $	$\begin{matrix} 0 \\ 2 \ e, \mu \ (\text{SS}) \\ 0.2 \ e, \mu \\ 0.2 \ e, \mu \end{matrix} \\ 0 \\ 2 \ e, \mu \ (Z) \\ 3 \ e, \mu \ (Z) \\ 1-2 \ e, \mu \end{matrix}$	2 b 1 b 1-2 b)-2 jets/1-2 mono-jet 1 b 1 b 4 b	Yes Yes Yes Yes Yes Yes Yes Yes	36.1 36.1 1.7/13.3 20.3/36.1 3.2 20.3 36.1 36.1	\tilde{b}_1 275-700 GeV 950 GeV \tilde{b}_1 275-700 GeV 275-700 GeV \tilde{t}_1 117-170 GeV 200-720 GeV \tilde{t}_1 90-198 GeV 205-950 GeV \tilde{t}_1 90-323 GeV 205-950 GeV \tilde{t}_1 90-323 GeV 205-950 GeV \tilde{t}_1 90-323 GeV 200-790 GeV \tilde{t}_2 200-790 GeV 320-880 GeV	$\begin{split} & m(\tilde{x}_1^0) {<} 420 \mathrm{GeV} \\ & m(\tilde{x}_1^0) {<} 200 \mathrm{GeV}, m(\tilde{x}_1^{\pm}) {=} m(\tilde{x}_1^0) {+} 100 \mathrm{GeV} \\ & m(\tilde{x}_1^{\pm}) {=} 2m(\tilde{x}_1^0), m(\tilde{x}_1^0) {=} 55 \mathrm{GeV} \\ & m(\tilde{x}_1^0) {=} 1 \mathrm{GeV} \\ & m(\tilde{x}_1^0) {=} 1 \mathrm{GeV} \\ & m(\tilde{x}_1^0) {=} 150 \mathrm{GeV} \\ & m(\tilde{x}_1^0) {=} 0 \mathrm{GeV} \\ & m(\tilde{x}_1^0) {=} 0 \mathrm{GeV} \\ & m(\tilde{x}_1^0) {=} 0 \mathrm{GeV} \end{split}$	ATLAS-CONF-2017-038 ATLAS-CONF-2017-030 1209.2102, ATLAS-CONF-2016-077 1506.08616, ATLAS-CONF-2017-020 1604.07773 1403.5222 ATLAS-CONF-2017-019 ATLAS-CONF-2017-019
EW direct	$ \begin{array}{c} \tilde{\ell}_{LR} \tilde{\ell}_{LR}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_1^0 \\ \tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow \tilde{\ell} \nu (\ell \tilde{\nu}) \\ \tilde{\chi}_1^+ \tilde{\chi}_1^0, \tilde{\chi}_2^+ \rightarrow \tilde{\ell} \nu (\tau \tilde{\nu}), \tilde{\chi}_2^0 \rightarrow \tilde{\tau} \tau (\nu \tilde{\nu}) \\ \tilde{\chi}_1^+ \tilde{\chi}_2^0 \rightarrow \tilde{\ell}_L \nu \tilde{\ell}_L \ell (\tilde{\nu} \nu), \ell \tilde{\nu} \tilde{\ell}_L \ell (\tilde{\nu} \nu) \\ \tilde{\chi}_1^+ \tilde{\chi}_2^0 \rightarrow W \tilde{\chi}_1^0 h \tilde{\chi}_1^0, h \rightarrow b \tilde{b} / W W / \tau \tau / \gamma \gamma \\ \tilde{\chi}_2^0 \tilde{\chi}_3^0, \tilde{\chi}_{2,3}^0 \rightarrow \tilde{\ell}_R \ell \\ \text{GGM (wino NLSP) weak prod., } \tilde{\chi}_1^0 - \\ \text{GGM (bino NLSP) weak prod., } \tilde{\chi}_1^0 - \end{array} $	$\begin{array}{c} 2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ \tau \\ 3 \ e, \mu \\ 2 \ \cdot 3 \ e, \mu \\ e. \mu, \gamma \\ 4 \ e, \mu \\ \rightarrow \gamma \tilde{G} 1 \ e, \mu + \gamma \\ \gamma \tilde{G} 2 \ \gamma \end{array}$	0 0 - 0-2 jets 0-2 b 0 - -	Yes Yes Yes Yes Yes Yes Yes Yes	36.1 36.1 36.1 36.1 20.3 20.3 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{split} & m(\tilde{\chi}_{1}^{0}){=}0 \\ & m(\tilde{\chi}_{1}^{0}){=}0, m(\tilde{\ell}, \tilde{\nu}){=}0.5(m(\tilde{\chi}_{1}^{+}){+}m(\tilde{\chi}_{1}^{0})) \\ & m(\tilde{\chi}_{1}^{0}){=}0, m(\tilde{\tau}, \tilde{\nu}){=}0.5(m(\tilde{\chi}_{1}^{+}){+}m(\tilde{\chi}_{1}^{0})) \\ & m(\tilde{\chi}_{1}^{+}){=}m(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{1}^{0}){=}0, m(\tilde{\ell}, \tilde{\nu}){=}0.5(m(\tilde{\chi}_{1}^{+}){+}m(\tilde{\chi}_{1}^{0})) \\ & m(\tilde{\chi}_{1}^{+}){=}m(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{1}^{0}){=}0, \tilde{\ell} \text{ decoupled} \\ & m(\tilde{\chi}_{1}^{0}){=}m(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{1}^{0}){=}0, m(\tilde{\ell}, \tilde{\nu}){=}0.5(m(\tilde{\chi}_{2}^{0}){+}m(\tilde{\chi}_{1}^{0})) \\ & c\tau{<}1mm \\ & c\tau{<}1mm \end{split}$	ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 ATLAS-CONF-2017-035 ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 1501.07110 1405.5086 1507.05493 1507.05493
Long-Ilved particles	$\begin{array}{l} \text{Direct}\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}\text{prod., long-lived}\tilde{\chi}_{1}^{\pm}\\ \text{Direct}\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}\text{prod., long-lived}\tilde{\chi}_{1}^{\pm}\\ \text{Stable, stopped}\tilde{g}\text{R-hadron}\\ \text{Stable}\tilde{g}\text{R-hadron}\\ \text{Metastable}\tilde{g}\text{R-hadron}\\ \text{GMSB, stable}\tilde{\tau},\tilde{\chi}_{1}^{0}{\rightarrow}\tilde{\tau}(\tilde{e},\tilde{\mu}){+}\tau(e,\mu)\\ \text{GMSB},\tilde{\chi}_{1}^{0}{\rightarrow}\gamma\tilde{G},\text{long-lived}\tilde{\chi}_{1}^{0}\\ \tilde{g}\tilde{g},\tilde{\chi}_{1}^{0}{\rightarrow}eev/e\muv/\mu\muv\\ \text{GGM}\tilde{g}\tilde{g},\tilde{\chi}_{1}^{0}{\rightarrow}Z\tilde{G}\end{array}$	Disapp. trk dE/dx trk 0 trk dE/dx trk $1-2\mu$ 2γ displ. $ee/e\mu/\mu_l$ displ. vtx + jet	1 jet - 1-5 jets - - - - s - s -	Yes Yes - - - Yes - -	36.1 18.4 27.9 3.2 3.2 19.1 20.3 20.3 20.3	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} m(\tilde{\chi}_1^+) - m(\tilde{\chi}_1^0) \sim 160 \; MeV, \; \tau(\tilde{\chi}_1^+) = 0.2 \; ns \\ m(\tilde{\chi}_1^+) - m(\tilde{\chi}_1^0) \sim 160 \; MeV, \; \tau(\tilde{\chi}_1^+) < 15 \; ns \\ m(\tilde{\chi}_1^0) = 100 \; GeV, \; 10 \; \mu s < \tau(\tilde{g}) < 1000 \; s \\ \end{array}$	ATLAS-CONF-2017-017 1506.05332 1310.6584 1606.05129 1604.04520 1411.6795 1409.5542 1504.05162 1504.05162
RPV	$ \begin{array}{l} LFV pp \rightarrow \widetilde{v}_{\tau} + X, \widetilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau \\ Bilinear \ RPV \ CMSSM \\ \widetilde{\chi}_1^+ \widetilde{\chi}_1^-, \widetilde{\chi}_1^+ \rightarrow W \widetilde{\chi}_1^0, \widetilde{\chi}_1^0 \rightarrow eev, e\mu\nu, \mu\mu\nu \\ \widetilde{\chi}_1^+ \widetilde{\chi}_1^-, \widetilde{\chi}_1^+ \rightarrow W \widetilde{\chi}_1^0, \widetilde{\chi}_1^0 \rightarrow \tau\tau\nu_e, e\tau\nu_\tau \\ \overline{g}\widetilde{g}, \overline{g} \rightarrow qq\widetilde{\chi}_1^0, \widetilde{\chi}_1^0 \rightarrow qqq \\ \widetilde{g}\widetilde{g}, \overline{g} \rightarrow q\widetilde{g}\widetilde{\chi}_1^0, \widetilde{\chi}_1^0 \rightarrow qqq \\ \widetilde{g}\widetilde{g}, \overline{g} \rightarrow \widetilde{I}_1, \widetilde{I}_1 \rightarrow bs \\ \widetilde{I}_1\widetilde{I}_1, \widetilde{I}_1 \rightarrow bl \end{array} $	$\begin{array}{c} \hline e\mu,e\tau,\mu\tau\\ 2\ e,\mu\ (SS)\\ 4\ e,\mu\\ 3\ e,\mu+\tau\\ 0\ 4-\\ 1\ e,\mu\\ 8\\ 1\ e,\mu\\ 8\\ 0\\ 2\ e,\mu\\ \end{array}$		Yes Yes Yes ets - ets - b - b -	3.2 20.3 13.3 20.3 14.8 14.8 36.1 36.1 15.4 36.1	\$\vec{v}_r\$ \$\vec{u}_i\$	1.9 TeV $\lambda_{111}'=0.11, \lambda_{132/133/233}=0.07$ 1.45 TeV $m(\tilde{q})=m(\tilde{g}), cr_{LSP} < 1 \text{ mm}$ eV $m(\tilde{\chi}_1^0)>400 \text{GeV}, \lambda_{12k}\neq 0 \ (k=1,2)$ $m(\tilde{\chi}_1^0)>0.2 \times m(\tilde{\chi}_1^1), \lambda_{133}\neq 0$ BR (t)=BR(b)=BR(c)=0% 1.55 TeV $m(\tilde{\chi}_1^0)=800 \text{ GeV}$ 2.1 TeV $m(\tilde{\chi}_1^0)=1 \text{ TeV}, \lambda_{112}\neq 0$ 1.65 TeV $m(\tilde{t}_1)=1 \text{ TeV}, \lambda_{323}\neq 0$ 1.45 TeV $BR(\tilde{t}_1 \rightarrow be/\mu)>20\%$	1607.08079 1404.2500 ATLAS-CONF-2016-075 1405.5086 ATLAS-CONF-2016-057 ATLAS-CONF-2016-057 ATLAS-CONF-2016-057 ATLAS-CONF-2017-013 ATLAS-CONF-2017-013 ATLAS-CONF-2016-022, ATLAS-CONF-2016-084 ATLAS-CONF-2017-036
Other	Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_1^0$	0	2 c	Yes	20.3	ε 510 GeV	m (\tilde{x}_1^0) <200 GeV	1501.01325

1

Mass scale [TeV]

*Only a selection of the available mass limits on new states or phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

10⁻¹

ictori

Production (colliders) $p+p \rightarrow \chi+\chi$ χ Indirect (cosmology) $\chi+\chi \rightarrow p+p$ ³⁴ Direct (underground experiments) $\chi+p \rightarrow \chi+p$ $\chi=$ Dark matter particle p = Standard Model particle

Signatures based on large missing transverse energy recoiling against Standard Model particle Interpretation of searches based on simplified models with various kind of mediators (scalar, vectors, ..)

Dark Matter searches

References

Mono-photon search <u>arXiv:1704.03848</u> Mono-H to bb search <u>ATLAS-CONF-2017-028</u> bb + missing energy search <u>ATLAS-CONF-2016-086</u>

Dark Matter searches

Interpretation assumes couplings of masses of the BSM particles in the simplified models

Limits quoted on mediators and/or dark matter particle mass assuming certain values of the couplings in the models

Dark Matter searches

- Wide search program covering plenty of signatures and interpretations
- No evidence of new physics yet
- But we know that something is out there...

University of Victoria