

Searches for heavy resonances decaying to heavy-flavour quarks

Laurie M^cClymont, on behalf of the ATLAS collaboration

<u>QFTHEP</u>

27th June 2017

2 Heavy Quark Resonances Introduction

UCL

Many models of new physics couple to the heaviest family of quarks!!

p.s. slide # in top-left!!!

Two heavy quarks!
Two different analyses1.*b*-quark analysis[1]2.top quark analysis[2]

p.s. slide # in top-left!!!

Y 2 <u>Heavy Quark Resonances Introduction</u> Many models of new physics couple Observed as resonances

[1]

N BSM SM BSM L. Bryngemark

Two heavy quarks! Two different analyses

- 1. b-quark analysis
- 2. top quark analysis [2]

Heavy quarks are interesting because:

- 1. 3rd generation is special!
 - ➡ Could be a sign of new physics...
- 2. Specialist reconstruction techniques
- 3. Differing background modelling techniques employed

p.s. slide # in top-left!!!

Z' Boson

b* quark

Other models are also available...

Benchmark Signal Models

Z' Boson

3

Neutral spin-1 boson from additional U(1) symmetry to SM

- Can decay to pairs of heavy quarks
- Could act as dark matter mediator
 - Links SM to DM sector
 - Explain DM abundance

b* quark

Other models are also available...

Other models are also available...

How to identify a b-quark?

b-quark analysis

top quark analysis

How to identify a b-quark?

- b-quark will hadronise to form a B-hadron
- B-hadrons travel a finite distance before decaying
 - For pT = 200 GeV => d = 20 mm

b-quark analysis

top quark analysis

Event Selection : b-quarks

- 2015 and 2016 Data Combined
 - 13 fb⁻¹ of 13 TeV pp collision data
- Select Dijet Events
 - Require two high-p⊤ jets
 - m_{jj} > 1.4 TeV

b-quark analysis

- b-Tagging to identify b-jets:
 - Two categories:
 - >= 1 b-tag cat. (for b*)

[1]

- == 2 b-tag cat. (for Z')

Two Step strategy:

- Fit to smooth background
 - Use smoothly falling function:

 $f(z)=p_1\left(1-z
ight)^{p_2}(z)^{p_3}$ where, $z=m/\sqrt{s}$

- Search for discrepancies from fit
 - BumpHunter algorithm is used
 - Finds most discrepant excess.
 - p-Value from pseudo-experiments
 - Accounts for look-elsewhere effect
 - If significant excess is found, bkgd fit is repeated ignoring this excess.

- Search Strategy
 - Fit to smoothly falling background
 - Find resonances using bumpHunter

b-quark analysis

[1]

b-quark analysis

Limits Set on **Benchmark Models**

b* excited quark $1.5 < m_{b^*} < 2.3 \text{ TeV}$

> Leptophobic Z' boson $m_{Z'} = 1.5 \text{ TeV}$

[1]

Model	b* quark	Z' Boson
ATLAS 13 TeV, 13.3 ifb	2.3 TeV	1.5 TeV (Leptophobic)
CMS 8 TeV, 19.6 ifb [3]	1.54 TeV	1.68 TeV (Sequential SM)

Single lepton tt

(electron or muon)

Event Selection : Top quark

- **2015 data set 3.2 fb**⁻¹ 13 TeV pp data
 - Good Branching Ratio: 28% events
 - Lepton makes for easier reconstruction and identification

[2]

top quark analysis

Single lepton tt

(electron or muon)

Event Selection : Top quark

- 2015 data set 3.2 fb⁻¹ 13 TeV pp data
 - Good Branching Ratio: 28% events
 - Lepton makes for easier reconstruction and identification

[2]

top quark analysis

Single lepton tt

(electron or muon)

Event Selection : Top quark

- 2015 data set 3.2 fb⁻¹ 13 TeV pp data
 - Good Branching Ratio: 28% events
 - Lepton makes for easier reconstruction and identification

[2]

top quark analysis

Background Estimations

Monte-Carlo Simulation is used for most backgrounds

Background Estimations

- Monte-Carlo Simulation is used for most backgrounds
 - ➡ W+Jets
- Data-Driven

- Use well predicted W⁺/W⁻ charge asymmetry to correct simulation normalisation
- Multi-jet-Estimate using a "loose" lepton selection
control region, which is multi-jet dominated

- Search Strategy
 - Compare data to background estimates

top quark analysis

[2]

- Find excesses using BumpHunter

No Significant
Deviation
FoundMost significant excess:
M = 1.75 TeV
Sig = 0.9 σ

top quark analysis [2] 🗴 🛛 💽

Model	ATLAS 13 TeV, 3.2 ifb	CMS [5] 13 TeV, 2.6 ifb	ATLAS 14 TeV, 300 ifb	ATLAS [6] 14 TeV, 3000 ifb
Top-colour Z' 0.7 - 2.0 Tel Boson (Width = 1.2%)	0.7 - 2.0 TeV (Width = 1.2%)	0.6 - 2.3 TeV (Semi-leptonic, Width = 1%)	3.0 TeV (Resolved + Boosted)	4.0 TeV (Resolved + Boosted)
	(***********************	0.6 - 2.5 TeV (Combined with hadronic)	<u>Projected</u>	<u>Projected</u>

b-quark analysis

- Use trigger level b-tagging to reach new mass ranges
 - *m_{jj} > 1.4 TeV* : Using single jet-level trigger as presented
 - ▶ 0.5 < m_{jj} < 1.5 TeV : Using trigger level b-tagging
 - Such a search performed in 2015 data-set [7]

top quark analysis

Different topologies for differing top-quark momentums

top quark analysis

Different topologies for differing top-quark momentums

• All hadronic tt channel

both analyses

- 2015 + 2016 data-set : ~ **36.1 fb**⁻¹ of data
- Both analyses expect updates with more data...

- Searches For Heavy Quarks Resonances at ATLAS
 - Both b-quark and t-quark searches

4 <u>Conclusions</u>

- Ê.
- Searches For Heavy Quarks Resonances at ATLAS
 - Both b-quark and t-quark searches
- Probe into new physics models
 - **Top-colour and leptophobic Z' boson** : May be dark matter mediator
 - **b* heavy quark** : model could explain quark hierarchy

- Searches For Heavy Quarks Resonances at ATLAS
 - Both b-quark and t-quark searches
- Probe into new physics models
 - **Top-colour and leptophobic Z' boson** : May be dark matter mediator
 - **b* heavy quark** : model could explain quark hierarchy
- Used complex techniques to identify heavy quarks
 - b-quark: Use b-tagging to identify B-hadrons
 - **Top-quark:** Use three different types of jets

- Searches For Heavy Quarks Resonances at ATLAS
 - Both b-quark and t-quark searches
- Probe into new physics models
 - **Top-colour and leptophobic Z' boson** : May be dark matter mediator
 - **b* heavy quark** : model could explain quark hierarchy
- Used complex techniques to identify heavy quarks
 - b-quark: Use b-tagging to identify B-hadrons
 - **Top-quark:** Use three different types of jets
- Differing techniques to model backgrounds
 - **b-quark:** Use smoothly falling fit to data
 - **Top-quark:** Use MC simulation with data-driven components

- Searches For Heavy Quarks Resonances at ATLAS
 - Both b-quark and t-quark searches
- Probe into new physics models
 - **Top-colour and leptophobic Z' boson** : May be dark matter mediator
 - **b* heavy quark** : model could explain quark hierarchy
- Used complex techniques to identify heavy quarks
 - **b-quark:** Use b-tagging to identify B-hadrons
 - **Top-quark:** Use three different types of jets
- Differing techniques to model backgrounds
 - **b-quark:** Use smoothly falling fit to data
 - **Top-quark:** Use MC simulation with data-driven components
- Results
 - No significant discrepancies from standard model
 - New limits set on benchmark models

- Searches For Heavy Quarks Resonances at ATLAS
 - Both b-quark and t-quark searches
- Probe into new physics models
 - **Top-colour and leptophobic Z' boson** : May be dark matter mediator
 - **b* heavy quark** : model could explain quark hierarchy
- Used complex techniques to identify heavy quarks
 - b-quark: Use b-tagging to identify B-hadrons
 - **Top-quark:** Use three different types of jets
- Differing techniques to model backgrounds
 - **b-quark:** Use smoothly falling fit to data
 - **Top-quark:** Use MC simulation with data-driven components
- Results
 - No significant discrepancies from standard model
 - New limits set on benchmark models
 - Updates expected with full 2015 + 2016 data-set, so stay tuned!

[1]: ATLAS-CONF-2016-060:

Search for resonances in the mass distribution of jet pairs with one or two jets identified as b-jets with the ATLAS detector with 2015 and 2016 data

[2]: ATLAS-CONF-2016-014:

Search for heavy particles decaying to pairs of highly-boosted top quarks using lepton-plusjet events in proton-proton collisions at sqrt(s) = 13 TeV with the ATLAS detector

- [3] : CMS PAS EXO-12-023 (CMS di-b-jet, 8 TeV)
- [4] : ATL-PHYS-PUB-2015-053 (Top-tagger)
- [5] : **arXiv:1704.03366** (CMS t*t* resonance, 13 TeV)
- [6] : **ATL-PHYS-PUB-2017-002** (High-lumi prospects tTATLAS)
- [7] : ATLAS-CONF-2016-031 (Low-mass di-b-jet)

Thanks to:

- Anna Duncan: for overview slides and sourcing cartoons for tt analysis
- Andreas Korn: for some figures and slides on Z' as DM mediator
- Lene Bryngemark: for the dijet resonance cartoon

b-quark analysis

top quark analysis

Backup

17 Data and Event/Jet Selection

- Data Used
 - Comined 2015 + 2016 Data Set 13.3 ifb
 - GRL IBL-on data only

- Trigger
 - HLT_j380, lowest unprescaled single jet trigger
- Event Selection
 - Reject events with problematic calo. reconstruction (LAr, Tile and Core Errors)
 - At least two jets.
 - Leading-jet $p_T > 440$ GeV, Subleading jet $p_T > 60$ GeV
 - m_{jj} > 1340 GeV, such that we are on the trigger plateau.
 - $|y^*| < 0.6$, where $y^*=0.5^*(y_1 y_2)$, central region more sensitive
 - IηI < 2.4, in tracking geometry for b-tagging
 - 2 b-Tagged jets: fixed 85% efficiency WP
- Jet Selection
 - Standard jet calibration (with JES correction applied)
 - 2016 loose jet quality cuts applied.

- Data Used
 - 2015 Dataset 3.2 ifb (GRL IBL-on)
- Trigger
 - e trigger: *HLT_e24_lhmedium_L1EM18VH OR HLT_e60_lhmedium OR HLT_e120_lhloose*.
 - • µ trigger: *HLT_mu20 _loose_L1MU15 OR HLT_mu50*
- Event pre-selection
 - Exactly one lepton (electron or muon)
 - Veto on the 2nd lepton at pT > 25 GeV.
 - E_T^{Miss} > 20 GeV
 - $E_T^{Miss} + m_T^W > 60 \text{ GeV}$
- Jets
 - ≥ 1 b-tagged track jet
 - ≥1 R = 0.4 jet (small-R jet)
 - $\Delta R(\text{small-R jet,l}) < 1.5.$
 - ≥ 1 large-R jet (large-R jet)
 - $\Delta \phi$ (I,large-R jet) > 2.3
 - $\Delta R(\text{large-R jet, small-R jet}) > 1.5.$

• Muons

- If $\Delta R(muon, jet) < (0.04 + 10GeV/p_{\mu T})$:
 - If the jet has at least 3 tracks originating from the primary vertex, remove the muon
 - Else, remove the overlapping jet

Electrons

- Reject small-R jets with ΔR(electron, jet) < 0.2 (assume it's an electron energy deposit)
- Then, reject electrons that have ΔR (electron, jet) < 0.4
- (assume it's a b-jet decay).

• Fit to background using smoothly falling

 $f(x) = p_1(1-x)^{p_2}(x)^{p_3+p_4\ln x+p_5\ln x^2}$ where, $x = m_{jj}/\sqrt{s}$

- This comes in 3, 4 and 5 parameter functions for 3 and 4 parameter set p₄ = p₅ = 0 or p₅ = 0 respectively
- Use Wilks' statistic for nested function
 - Compares to a higher-order function
 - Follows chi2 distribution
 - Hence, can calculate a p-value from it
- Use Wilks' p-value to choose fit function
 - Default option is 3 parameter fit function
 - Compare to higher order function (4 parameter)
 - If p-value drops below 0.05:
 - Indicates that the higher-order function required.
 - Adopt higher order function and then test against 5-parameter

-
$$2\log(\Lambda) = -2\log\left(\frac{L(H_0|x)}{L(H_1|x)}\right)$$

b-quark analysis

10⁻²

 10^{-3}

>= 1 b-tag

2

3

45⁻ m_{jj} [TeV]

ATLAS Simulation Preliminary √s = 13 TeV

- 1. Background from sources of non-prompt leptons (predominantly QCD multijet).
 - Very large uncertainties in Monte Carlo modelling
 - Choose region with many leptons of low reconstruction quality (larger contribution from QCD multijet events).
 - Matrix method separated prompt from non-prompt leptons.
 - loose \rightarrow tight efficiency ϵ and fake rate f derived from (or validated with) data.
 - Select signal events except with loose lepton criteria. The number selected will be Nprompt + NQCD
 - Ntight =ε×Nprompt +f ×NQCD
 - Solve for f × NQCD (using anti-tight leptons)
 - Shape: Weights to account for f and ϵ dependency on variables.

2. W+jets background normalisation.

- Data driven scale factors
- Select events with signal selection, except \geq 1 b-tag cut.
- W+jets charge asymmetry well predicted.