ATLAS Searches for Resonances Decaying to Boson Pairs

Andrey Ryzhov IHEP (Protvino), NRC KI on behalf of the ATLAS Collaboration

QFTHEP 2017, Y

Introduction

Many models beyond SM predict heavy resonances:

- o Spin-O high mass Higgs boson: extended Higgs sector
- Spin-1 new gauge bosons (W', Z'): Heavy Vector Triplets (HVT)
- Spin-2 graviton: warped extra dimensions (Randall-Sundrum) bulk model

Diboson searches in ATLAS:

- \circ VV \rightarrow qqqq, WV \rightarrow lvqq, ZV \rightarrow llqq, vvqq
- $\circ WZ \rightarrow |v|l, ZZ \rightarrow |||l, WW \rightarrow |v|v, ZZ \rightarrow ||vv$
- \circ VH \rightarrow qqbb, lvbb, llbb, vvbb
- \circ HH → bbbb, bbγγ, bbττ, γγlvjj
- $\circ Z\gamma \rightarrow II\gamma, qq\gamma$
- ο γγ

where V = W or Z boson, H = Higgs boson, I = e, μ

Concentrate on latest 2015+2016 data-set exotics group analyses!

Techniques

Search for narrow resonances:

- Reconstruct decay products of resonance X
- Look for peak in invariant mass spectrum over a smooth background

- Resolved: optimization for low mass resonances; reconstruct two small-R jets (anti-kt *R*=0.4), j
- Merged: optimization for high mass resonances; decay products are detected as one object, a boosted large-R jet (anti-kt R=1.0), J

Techniques: Boosted boson tag

W/Z boson tagging:

- Mass requirements: consistent with Z or W within ±15 GeV
- NEW [VH \rightarrow qqbb] mass computed from calo and tracking information. Figure demonstrates the significant improvement in resolution achieved by mass definition [*]

distinguish:

Soft

Collinear

"D₂" substru <EventLoop/ prong decay QCD q/g jet "xAODRootAcc "xAODEventI

Higgs boson

b-tagging or *R*=0.2 nclude "xAODBTaggin nclude "xAODBTaggir

Mass requir

nclude "MuonSelecto ide "PathResolve ude "TEfficiencv "TH1.h" ude "TH1F.h" ide "TH1D.h" ude "TTree.h" ude "TFile.h" clude "TStopwatch. ide <iostream>

nclude <iterator>

ude <xAODTruth "xAODEgamma,

"xAODMissing Lude "xAODMissing

"xAODMissing

"FourMomUti

1.5

2

2.5

3

3.5

M_{II} [TeV]

• Tested on dijet MC and *data validation regions*

$VV \rightarrow qqqq$: Results

ATLAS-CONF-2016-055

1.5

$WV \rightarrow Ivqq$

ATLAS-CONF-2016-062

$W \rightarrow Iv, V \rightarrow qq (13.2 \text{ fb}^{-1})$

- W \rightarrow lv: $E_T^{miss} > 100 \text{ GeV}, p_T(lv) > 200 \text{ GeV}$
- V → qq: large R-jet with highest p_T; define high/low purity categories using D₂
- Signal Region (SR): the fat jet m_j within 15 GeV of the W/Z mass window
- Control Regions (CR): ttbar (b-tagged small-R jet and large-R jet ΔR >1.0); W+jets (m_j in sideband region)
- Dominant background coming from W+jets and ttbar
 - The background shapes (W+jets, *tf*) are modeled using simulated events.
 - Their normalizations are determined from a combined fit to the events in the signal and control regions

• Final discriminant: WW/WZ invariant mass m_{IvJ}

$WV \rightarrow Ivqq$: Results

ATLAS-CONF-2016-062

ATLAS-CONF-2016-082

$Z \rightarrow II, V \rightarrow qq (13.2 \text{ fb}^{-1})$

- $Z \rightarrow II$: Two isolated electrons or muons: m_{\parallel} within Z mass window
- $V \rightarrow qq$:

llqq

- merged analysis large R-jet with highest p_T > 200 GeV; define high/low purity categories using D_2
- resolved analysis two small-R jets; define tagged (with 2 b-tagged jets) and untagged category (with fewer than 2 b-tagged jets)
- Neutral heavy Higgs from VBF production: two additional small-R jets $m_{jj}^{tag} > 600$ GeV and $|\Delta \eta_{jj}^{tag}| > 3.1$, if not: ggF candidates
- Dominant background coming from Z+jets, top-quark and diboson
- Final discriminant: ZZ/ZW invariant mass m_{IIJ} and m_{IIJI}

$ZV \rightarrow IIqq: Results$

ATLAS-CONF-2016-082

ectations 95% C.L. limit σ(gg→H)×BR(H→ZZ) [pb] 95% C.L. limit σ(qq→H)×BR(H→ZZ) [pb] ATLAS Preliminary ATLAS Preliminary - Observed (CLs) Observed (CLs) 2010 80 ······ Expected (CLs) $10 = gg \rightarrow H \rightarrow ZZ \rightarrow IIqq$ 10 + Data 1 ATLAS Preliminary ± **1**σ $\sqrt{s} = \frac{2}{3} \sqrt{3} \sqrt{13} \sqrt{$ H 1.6 TeV (10 fb) H 1.6 TeV (10 fb) $\sqrt{s} = 13 \text{ TeV}, \ 13.2 \text{ fb}^{-1}$ $\sqrt{s} = 13 \text{ TeV}, 13.2 \text{ fb}^{-1}$ Events 10² $\pm 2\sigma$ Z + jets Z + jets ± 2σ $H \rightarrow ZZ \rightarrow \ell \ell a a$ $H \rightarrow ZZ \rightarrow \ell \ell a a$ SM Diboson SM Diboson Merged high-purity SR, ggF Merged low-purity SR, ggF Top Quarks Top Quarks 10 /////, Stat. @Syst. Uncert /////. Stat. @Syst. Uncert. Pre-fit background Pre-fit background 1.0 10 10 10 10⁻² 10 10-10 10-10⁻³ 10 1000 2000 2500 ō 500 10 500 1500 3000 m_H[GeV] m_µ [GeV] /1 Data/Pred é Dat 0 1500 500 1000 1500 2000 2500 3000 500 1000 2000 2500 3000 *m*(*ℓℓJ*) [GeV] m(*llJ*) [GeV] 95% C.L. limit σ(HVT W')×BR(WZ) [pb] ATLAS Preliminary Observed (CLs) 95% C.L. limit σ(gg→H)×BR(H→ZZ) [pb] 95% C.L. limit σ(qq→H)×BR(H→ZZ) [pb] ATLAS Preliminary ATLAS Preliminary Observed (CLs) Observed (CLs) ····· Expected (CLs) 10 HVT→WZ→llqq ····· Expected (CLs) ····· Expected (CLs) $\pm 1\sigma$ 10 gg→H→ZZ→llqq 10 = qq→H→ZZ→llqq <u>±</u>2σ √s = 13 TeV, 13.2 fb⁻¹ ± **1**σ ± **1**σ √s = 13 TeV, 13.2 fb⁻¹ √s = 13 TeV, 13.2 fb⁻¹ ----- HVT Model A, g_=1 ± 2σ ± 2σ 1 10 10⁻¹ 10 10-2 10-2 10-2 10^{-3} 10^{-3} 10 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 500 3000 1000 1500 2000 2500 3000 500 1000 2000 2500 1500 m_{w'} [GeV] QFTHEP 2017 m_H [GeV] 10 m_H [GeV]

*m*_{III} and *m*_{IIII} distributions in SR:

ATLAS-CONF-2016-082

$Z \rightarrow vv, V \rightarrow qq$ (13.2 fb⁻¹)

- $Z \rightarrow vv: E_T^{miss} > 250 \text{ GeV}$; vetoing events with charged leptons
- V → qq: leading large-R jet with high/low purity selection categories defined by D₂
- Merged regime only
- Multi-jet removal:
 - $p_T^{miss} > 50 \, \text{GeV}$
 - $(\Delta \phi(\vec{E}_{\rm T}^{\rm miss}, \vec{p}_{\rm T}^{\rm miss}) < 1$
 - $\min[\Delta \phi(\vec{E}_{\rm T}^{\rm miss}, {\rm small} R \text{ jet})] > 0.4$

• Main backgrounds: Z+jets, W+jets and ttbar estimated from simulation

• Final discriminant: $m_{\rm T} = \sqrt{(E_{{\rm T},J} + E_{{\rm T}}^{\rm miss})^2 - (\vec{p}_{{\rm T},J} + \vec{E}_{{\rm T}}^{\rm miss})^2}$, where $E_{{\rm T},J} = \sqrt{m_J^2 + p_{{\rm T},J}^2}$. 11

$ZV \rightarrow vvqq$: Results

ATLAS-CONF-2016-082

$m_{\tau}(vvJ)$ in SR:

No significant excess in data over backgrounds is observed

W' → WZ: Summary

 $VH \rightarrow qqbb$

ATLAS-CONF-2017-018

$H \rightarrow bb, V \rightarrow qq (36.1 \text{ fb}^{-1})$

- $V \rightarrow qq (H \rightarrow bb)$ identified as 1 large-R jet
- Only merged regime Ο

- Uses combined mass algorithm for boson tagging Ο
- Backgrounds: mul Ο
 - Background sha
 - Normalization a extracted from
 - Verify backgrou •

Data

ATLAS Preliminary

Final discriminant: ZH/WH invariant mass m_{μ} Ο

$VH \rightarrow qqbb$: Results

ATLAS-CONF-2017-018

- Largest excess at \sim 3.0 TeV with a local significance of 3.3 σ and a global significance of 2.2 σ

$HH \rightarrow bbbb$

$H \rightarrow bb, H \rightarrow bb$ (13.3 fb⁻¹)

- H → bb identified as 1 large-R jet or 2 small-R jets
- Resolved analysis:
 - 4 small-R (*R* = 0.4) b-tagged anti-kt jets
- Boosted analysis:
 - 2 large-R (*R* = 1.0) anti-kt jets
 - at least 2 b-tagged ghost associated track jets
- Backgrounds: multi-jet (90%), ttbar (10%)
 - multi-jet estimated with (2-tag (0-tag) SR) * $\mu_{sideband}$
 - validated in CR with (2-tag (0-tag) CR) * $\mu_{sideband}$
 - Resolved: $\mu_{sideband}$ from ratio (4-tag / 2-tag)
 - Boosted: μ_{sideband} corresponds to ratio (2,3,4-tag / 0-tag)

ATLAS-CONF-2016-049

$HH \rightarrow bbbb: Results$

ATLAS-CONF-2016-049

Conclusion

- □ Presented several analyses using the 13-36 fb⁻¹ of 2015+2016 data
- □ No significant excess observed in most channels
- □ Advanced tagging techniques help to effectively reject QCD background
- Many other results with the full 36 fb⁻¹ dataset are expected to come out this summer

Waiting for more data!

Channel	Lumi (fb ⁻¹)	Documentation	Date
VV → qqqq	15.5	ATLAS-CONF-2016-055	04.08.2016
WV → lvqq	13.2	ATLAS-CONF-2016-062	30.08.2016
ZV → llqq	13.2	ATLAS-CONF-2016-082	04.08.2016
ZV → vvqq	13.2	ATLAS-CONF-2016-082	04.08.2016
VH → qqbb	36.1	ATLAS-CONF-2017-018	21.03.2017
$HH \rightarrow bbbb$	13.3	ATLAS-CONF-2016-049	04.08.2016

Back-up

Trimmed jet

- Boosted large-R jets can be easily contaminated by pileup interactions
- Jet "Grooming": remove those pileup contaminations, improve the resolution of V/H-jet mass
- ATLAS "grooming": **Trimming** [*] algorithm: re-cluster sub-jets with *R*=0.2 cone, and remove sub-jets with $p_T^{subjet} / p_T^{jet} < 0.05$

