Searches for electroweak production of supersymmetric gauginos and sleptons with the ATLAS detector

Huajie Cheng [IHEP, CAS] On behalf of the ATLAS Collaboration

QFTHEP2017, June 26 – July 3, 2017 Yaroslavl, Russia

国科学院高能物理研究所

Institute of High Energy Physics Chinese Academy of Sciences

Introduction

The SUper-SYmmetry is a well motivated and favored extension of the Stand Model (SM):

- solves hierarchy problem, grand unification issue, dark matter candidate...
- This talk will focus on the electroweak SUSY searches performed by ATLAS @13TeV.

Motivation

- If the coloured sparticles are too heavy for LHC, electroweak productions will be dominant.
- Smaller cross sections, limits are less stringent, and motivated by naturalness.
- Multi lepton final states make it easier to suppress the SM background.

Why EWK SUSY?

Common strategy

- Analyses target final states with different lepton multiplicities.
- Interpretation is usually performed with simplified SUSY models.
- An analysis can probe several models.
- Scenarios with R-parity-conserving (RPC) and R-parity-violating (RPV) decays are both being examined. $R_P = (-1)^{3(B-L)+2S}$

SI of	JSY searches rely on accurate modelling the Standard Model backgrounds
	Control/validation regions (CR/VR) are defined to study the background modeling
D	scriminating variables are used to
Se	eparate signals from backgrounds:
	Object counting, momenta, energies
	e.g. $N_{jet,bjet,l,r}$, p_T
	Scale variables, event-wise variables
kity	e.g. $H_T = \Sigma P_T$, E_T^{miss} , $m_{eff} = \Sigma P_T + E_T^{miss}$
	Angular variables
bub	e.g. $\Delta \varphi$ (jet, E_T^{miss}), $\Delta R(l, l)$
S	Mass variables
	e.g. m_{ll} , $m_T(l, E_T^{miss})$
	Hypothesis based event variables
	e.g. <i>m</i> _{T2}

Signal Processes

Signal Processes

ATLAS-CONF-2017-039

2/3L: Signal Regions 2I+0jets

$2\ell + 0$ je	$\mathbf{ts} \ \mathbf{binned} \ \mathbf{si}$	ignal region de	efinitions
$m_{\mathrm{T2}} \; [\mathrm{GeV}]$	$m_{\ell\ell} \ [GeV]$	SF bin	DF bin
	111-150	SR2-SF-a	
100 150	150-200	SR2-SF-b	SR2 DF a
100-150	200-300	SR_2 - SF - c	SILZ-DI-a
	> 300	SR2SF-d	m
	111-150	SR25SF-e	ι_T
150 200	150-200	SR 2-S F-f	N SR2 DF b
130-200	200-300	SRSF-g	
	> 300	SR2-SF-h	n
	111-150	SR 2S F-i	ne
200-300	150-200	SR2_SF-j	
200-300	200-300	SR2-SF-k	DIZ-DI-C
	> 300	SR Ø SF-1	
> 300	> 111	SR2-SF-m	SR2-DF-d
$2\ell\mathbf{+0jet}$	s inclusive s	signal region d	lefinitions
> 100	> 111	SR2-SF-loose	-
> 130	> 300	SR2-SF-tight	-
> 100	-	-	SR2-DF-100
> 150	-	-	SR2-DF-150
> 200	-	-	SR2-DF-200
> 300	-	-	SR2-DF-300

- □ Signature: 2 opposite-sign (OS) leptons, 0 jet, large E_T^{miss} .
- SRs defined for same-flavor (SF) and different-flavor (DF) separately, further binned in stransverse mass (m_{T2}) and invariant mass (m_{II}, only for SF) after preselection on m_{Il} and a jet veto.

$$m_{\text{T2}} = \min_{\mathbf{q}_{\text{T}}} \left[\max \left(m_{\text{T}}(\mathbf{p}_{\text{T}}^{\ell 1}, \mathbf{q}_{\text{T}}), m_{\text{T}}(\mathbf{p}_{\text{T}}^{\ell 2}, \mathbf{p}_{\text{T}}^{\text{miss}} - \mathbf{q}_{\text{T}}) \right) \right]$$
$$m_{\text{T}}(\mathbf{p}_{\text{T}}, \mathbf{q}_{\text{T}}) = \sqrt{2(p_{\text{T}}q_{\text{T}} - \mathbf{p}_{\text{T}} \cdot \mathbf{q}_{\text{T}})}$$

2/3L: Signa	l Regions	2l+jets
-------------	-----------	---------

ATLAS-CONF-2017-039

Signature: 2 SFOS leptons, ≥ 2 non-b-tagged
jets, large E_T^{miss} .

Select events with 2 leptons from an on-sell Z boson and 2 jets from W boson.

- Two inclusive SRs targeting intermediate / large mass splittings between C1/N2 and N1.
- □ Two orthogonal SRs for low mass splitting:
 - SR2-low-2J: assume 2 jets from **W boson**
 - SR2-low-3J: assume C1N2 recoils against **ISR jets**

8	1

	Main selections
SR2-int	≥ 2 jets, E_T^{miss} > 150GeV
SR2-high	≥ 2 jets, E_T^{miss} > 250GeV
SR2-low-2J	2 jets, $E_T^{miss} > 100 GeV$, W recoiling against the Z+ E_T^{miss} system
SR2-low-3J	3-5 jets, $E_T^{miss} > 100$ GeV, ISR jets recoiling against the Z+W+ E_T^{miss} system

2/3L: Signal Regions 3I

	3I SR definition	S
SRs for slepton mediated	$ m_{SFOS} - m_Z > 10 GeV$	binned in p_{T}^{l3}
SRs for gauge-boson mediated	$ m_{SFOS} - m_Z < 10 GeV$	binned in $E_T^{miss},p_T^{l3},n_{jet}$ and m_T^{min}

- □ Signature: Exactly 3 leptons (2 SFOS leptons), 0 b-tagged jets, large E^{miss}_T.
- □ Two sets of SRs defined by m_{ll} to target slepton and gauge-boson mediated decays, further binned in E_T^{miss} , p_T^{l3} , n_{jet} and m_T^{min} .

2/3L: Background Estimation

Ba	ackground	estimation sum	mary
Channel	$2\ell + 0$ jets	2ℓ +jets	3ℓ
Fake leptons	Matrix	method (MM)	Fake factor method (FF)
$t\overline{t} + Wt$	CR	MC	FF
VV	CR	MC	CR (WZ-only)
$Z/\gamma + \text{jets}$	MC	γ +jet template	\mathbf{FF}
Higgs/ $VVV/$ top+ V		M	C

□ Irreducible backgrounds: (prompt and real leptons)

- VV, Z/γ+jets, tt dominant in 2l channels; small contributions from Higgs, VVV, top+V
- In general estimated from MC simulation, dominant backgrounds are normalized in dedicated CRs

□ Reducible backgrounds: (≥1 fake or non-prompt lepton)

- > Multi-jet, W+jets, single top for 2l channels
- > Besides, Z+jets, $t\bar{t}$, WW are also reducible for 3I channel
- Estimated from data using "fake factor method".

2/3L: Results

- No significant excess above SM predictions in any SRs.
- Extended the exclusion limit to higher C1/N2 and slepton masses.

Signal Processes

2τ: Signal Regions

- □ Signature: 2 OS hadronically decaying τ leptons, 0 b-tagged jet, large E_T^{miss} .
- □ Two SRs defined targeting **low** and **high** mass splittings between C1/N2 and N1.
- $\square m_{T2} \text{ is the most powerful discriminating variable.}$

SR-lowMass	SR-highMass
\geq 2 medium τ	\geq 1 medium τ and 1 tight τ
$E_{T}^{miss} > 150 \text{GeV}, P_{T}^{\tau 1} > 50 \text{GeV}$	$E_T^{miss} > 110 GeV$, $P_T^{\tau 1} > 80 GeV$
$m_{T2} > 70 GeV$	$m_{T2} > 90 GeV$

ATLAS-CONF-2017-035

13

2τ: Background Estimation

□ Irreducible backgrounds:

- > VV, Z+jets, top ($t\bar{t}$, single top, $t\bar{t}V$).
- Estimated from MC simulation.

□ Reducible backgrounds:

- > 1 fake τ : W+jets, estimated from MC + normalization factor from data.
- > 2 fake τ : multi-jet, estimated from data using "ABCD method".

□ Validation:

A dedicated VR is designed for each background to validate the estimation from data.

2τ: Results

- No significant excess above SM predictions in any SRs.
- Extended the exclusion limit to higher C1/N2 and slepton masses.
- □ Limits on cross-section set for re-interpretation.

SM process	SR-lowMass	SR-highMass
diboson	5.9 ± 2.2	1.0 ± 0.8
W+jets	1.8 ± 1.1	$0.7\pm$ 0.5
Top quark	1.2 ± 1.0	$0.03\substack{+0.26\\-0.03}$
Z+jets	$0.6^{+0.7}_{-0.6}$	0.6 ± 0.5
$\operatorname{multi-jet}$	4.3 ± 4.0	1.3 ± 1.1
SM total	14 ± 6	3.7 ± 1.4
Observed	10	5
Reference point 1	11.6 ± 2.6	11.8 ± 2.8
Reference point 2	10.0 ± 2.1	11.4 ± 2.6
p_0	0.5	0.3
Expected $\sigma_{\rm vis}^{95}$ [fb]	$0.31_{-0.08}^{+0.12}$	$0.17\substack{+0.08 \\ -0.05}$
Observed $\sigma_{\rm vis}^{95}$ [fb]	0.26	0.20

ATLAS-CONF-2017-035

15

Signal Processes

16

4L: SRs & Background Estimation

□ Signature: \geq 4 leptons.

SR defined based on m_{eff} after vetoing leptons from Z boson.

$$m_{eff} = E_T^{miss} + \sum_l p_T(l) + \sum_J [p_T(J)]_{>40GeV}$$

SRA	SRB
N (e,µ) ≥ 4	N (e,µ) ≥ 4
Z boson veto	Z boson veto
$m_{eff} > 600 GeV$	$m_{eff} > 900 GeV$

Assume $\frac{1}{2}\lambda_{ijk}L_iL_j\overline{E_k}$ term violate \rightarrow multi-lepton final states.

□ Irreducible backgrounds:

- ➢ ZZ, tĪZ, tĪWZ, VVZ, Higgs, tĪtĪ, tĪtW.
- Estimated from MC simulation.

□ Reducible backgrounds:

- > 1 fake lepton: WZ, WWW, $t\bar{t}W$: estimated from MC
- 2 fake leptons: tt, Z+jets: estimated from data using "fake factor method"

4L: Results

Sample	VR	SRA	SRB
Irreducible			
ZZ	29 ± 5	0.6 ± 0.4	0.20 ± 0.19
$t\bar{t}Z$	2.05 ± 0.24	1.43 ± 0.23	0.47 ± 0.09
Higgs	1.7 ± 1.4	0.4 ± 0.4	0.11 ± 0.11
VVZ	0.72 ± 0.14	0.31 ± 0.06	0.123 ± 0.027
Others	0.28 ± 0.07	0.32 ± 0.04	0.181 ± 0.022
1-fake ℓ reducible	1.14 ± 0.07	0.168 ± 0.018	0.069 ± 0.014
2-fake ℓ reducible	16 ± 6	0.48 ± 0.24	0.11 ± 0.05
ΣSM	51 ± 6	3.6 ± 0.6	1.26 ± 0.26
Data	53	2	0
p_0		0.64	0.80
$S_{\rm obs}^{95}$		4.3	3.0
S_{exp}^{95}	_	$5.4^{+1.6}_{-1.3}$	$3.8^{+1.3}_{-0.8}$
$\langle \epsilon \sigma \rangle_{\rm obs}^{95}$ [fb]	_	0.32	0.22
CL_b		0.21	0.15

- No significant excess beyond SM expectations.
- Exclusion limits are extended to higher C1 mass as well as lower N1 mass.
- ◆ Model-independent cross-section limits are also derived.

Summary

- Three SUSY searches for electroweak productions using 13TeV datasets are presented.
- No discovery yet.
- Exclusion limits on gaugino/slepton masses have been largely extended.
- More studies with full 2015+2016 dataset and new results targeting compressed region are coming -- stay tuned!

Thank you for your attention!

Backup

SR definitions: 2/3L

2ℓ +0jets binned signal region definitions					
$m_{\mathrm{T2}} \; [\mathrm{GeV}]$	$m_{\ell\ell} \ [GeV]$	SF bin	DF bin		
100-150	111-150	SR2-SF-a			
	150-200	SR2-SF-b	SB2 DE a		
	200-300	SR2-SF-c	SR2-DF-a		
	> 300	SR2-SF-d			
	111-150	SR2-SF-e			
150.200	150-200	SR2-SF-f	SDO DE P		
150-200	200-300	SR2-SF-g	SR2-DF-0		
	> 300	SR2-SF-h			
200-300	111-150	SR2-SF-i			
	150 - 200	SR2-SF-j	SB2 DE a		
	200-300	SR2-SF-k	SR2-DF-C		
	> 300	SR2-SF-l			
> 300	> 111	SR2-SF-m	SR2-DF-d		
$2\ell + 0$ jets inclusive signal region definitions					
> 100	> 111	SR2-SF-loose	-		
> 130	> 300	SR2-SF-tight	-		
> 100	-	-	SR2-DF-100		
> 150	-	-	SR2-DF-150		
> 200	-	-	SR2-DF-200		
> 300	-	-	SR2-DF-300		

$2\ell + ext{jets} ext{ signal region definitions}$						
	SR2-int	SR2-high	SR2-low-2J	SR2-low-3J		
$n_{\rm non-b-tagged}$ jets	~	2	2	3-5		
$m_{\ell\ell} \; [\text{GeV}]$	81	-101	81-101	86-96		
$m_{jj} [{ m GeV}]$	70	-100	70-90	70-90		
$E_{\rm T}^{\rm miss}$ [GeV]	>150 >250		>100	>100		
$p_{\rm T}^{\bar{Z}}$ [GeV]	>80		> 60	> 40		
$p_{\mathrm{T}}^{ar{W}} \mathrm{[GeV]}$	>100					
$m_{\mathrm{T2}} \; [\mathrm{GeV}]$	>100					
$\Delta R_{(jj)}$	<1.5			<2.2		
$\Delta R_{(\ell\ell)}$	<1.8					
$\Delta \phi_{(\vec{E}_{\mathrm{T}}^{\mathrm{miss}},Z)}$			< 0.8			
$\Delta \phi_{(\vec{E}_{\pi}^{\text{miss}},W)}$	0.5 - 3.0		> 1.5	< 2.2		
$E_{\mathrm{T}}^{\mathrm{miss}}/p_{\mathrm{T}}^{Z}$			0.6 - 1.6			
$E_{\mathrm{T}}^{\mathrm{miss}}/p_{\mathrm{T}}^{W}$			< 0.8			
$\Delta \phi_{(\vec{E}_{\mathrm{m}}^{\mathrm{miss}},\mathrm{ISR})}$				> 2.4		
$\Delta \phi_{(\vec{E}_{\pi}^{\mathrm{miss}}, \mathrm{iet}1)}$				> 2.6		
$E_{\mathrm{T}}^{\mathrm{miss}}/\mathrm{ISR}$				0.4-0.8		
$ \eta(Z) $				< 1.6		
$p_{\rm T}^{ m jet3}$ [GeV]				> 30		

3ℓ binned signal region definitions							
$m_{\rm SFOS}$	$E_{\rm T}^{\rm miss}$	$p_{\mathrm{T}}^{\ell_3}$	$n_{\rm non-b-tagged jets}$	$m_{\mathrm{T}}^{\mathrm{min}}$	$p_{\mathrm{T}}^{\ell\ell\ell}$	$p_{\mathrm{T}}^{\mathrm{jet1}}$	Bins
[GeV]	[GeV]	[GeV]		[GeV]	[GeV]	[GeV]	
<81.2	> 130	20-30		> 110			SR3-slep-a
		> 30					SR3-slep-b
>101.2	> 130 2 > 130 5	20-50					SR3-slep-c
		50 - 80		> 110			SR3-slep-d
		> 80					SR3-slep-e
	60-120						SR3-WZ-0Ja
81.2-101.2	120-170		0	> 110			SR3-WZ-0Jb
	> 170						SR3-WZ-0Jc
81.2-101.2	120-200			> 110	< 120	> 70	SR3 WZ-1Ja
	> 200		≥ 1	110-160			SR 5- WZ-1Jb
		> 35		> 160			SR3-WZ-1Jc

SR definitions: 2τ and 4L

2τ

SR-lowMass	SR-highMass				
at least one opposite sign tau pair					
b-jet veto					
$Z ext{-veto}$					
at least two medium tau candidates	n tau candidates $ $ at least one medium and one tight tau candidate				
	$m(\tau_1, \tau_2) > 110 \text{ GeV}$				
$m_{\mathrm{T2}} > 70 \ \mathrm{GeV}$	$m_{\rm T2} > 90 { m ~GeV}$				
di-tau+ $E_{\rm T}^{\rm miss}$ trigger	di-tau+ $E_{\rm T}^{\rm miss}$ trigger	asymmetric di-tau trigger			
$E_{\rm T}^{\rm miss} > 150 { m ~GeV}$	$E_{\rm T}^{\rm miss} > 150 { m ~GeV}$	$E_{\rm T}^{\rm miss} > 110 { m ~GeV}$			
$p_{\mathrm{T},\tau_1} > 50 \mathrm{~GeV}$	$p_{\mathrm{T},\tau_1} > 80 \mathrm{~GeV}$	$p_{\mathrm{T},\tau_1} > 95 \mathrm{~GeV}$			
$p_{\mathrm{T},\tau_2} > 40 \mathrm{~GeV}$	$p_{\mathrm{T},\tau_2} > 40 \mathrm{GeV}$	$p_{\mathrm{T},\tau_2} > 65 \mathrm{~GeV}$			

		4L		
Sample	$N(e,\mu)$ signal	$N(e,\mu)$ loose	Z boson	$m_{\rm eff}$ [GeV]
SRA	>= 4	>= 0	veto	> 600
CR-SRA	= 2	>= 2	veto	> 600
SRB	>= 4	>= 0	veto	> 900
CR-SRB	= 2	>= 2	veto	> 900
VR	>= 4	>= 0	veto	< 600
CR-VR	= 2	>= 2	veto	< 600

.