Associated $\Upsilon + J/\psi$ production and prospects to observe a new hypothetical tetraquark

Sergey Baranov

P.N.Lebedev Institute of Physics, Moscow, Russia

PLAN OF THE TALK

- 1. Motivation for a new interaction mechanism
- 2. $\Upsilon + J/\psi$ production at the LHCb conditions
- 3. $\Upsilon + J/\psi$ production at the D0 conditions
- 4. Conclusions

Motivation

After a number of discoveries of tetra-quark mesonic states and penta-quark baryonic states, it would not be unreasonable to suggest the existence of a $b\bar{b}c\bar{c}$ state composed of four heavy quarks. Its inner structure can be described as a hadron molecule $B_c+\bar{B}_c$, or a hadroquarkonium $\Upsilon+J/\psi$, or, most probably, thequantum superposition of these two.

Such a state is then naturally connected to both $B_c + \overline{B}_c$ and $\Upsilon + J/\psi$ channels, so that these quark configurations can transform into one another if the invariant energy of the system is close to the four-quark resonant mass.

This opens a new production mechanism for $J/\psi + \Upsilon$ states. The issues considered in the present talk:

- Can we observe the hypothetical tetraquark in $J/\psi + \Upsilon$ channel?

- Can this new mechanism take credit for $J/\psi + \Upsilon$ events at D0?

Sergey Baranov,

Production mechanism in more detail

Hard production of two quark pairs, then soft reshuffling; looks like OZI-violating process with topological suppression $\simeq 1/N_c^2$ Two ways to estimate the cross section:

- take the color projection of $(B_c + \bar{B}_c)$ onto $(\Upsilon + J/\psi)$, and then assume quark-hadron duality, $\sigma(\Upsilon + J/\psi)_{\text{Res}} \simeq \sigma(\Upsilon + J/\psi)_{\text{NR}} \simeq \sigma(B_c + \bar{B}_c)/N_c^2$
- or integrate over a restricted phase space $\sigma(\Upsilon + J/\psi) \simeq \int_{M_0 - \delta M}^{M_0 + \delta M} \sigma(B_c + \bar{B_c}) \, dM \quad \text{with } \delta M \text{ taken as } \Gamma/2 \text{ or } E_{\text{bind}}.$

What is new compared to the already known mechanisms?

– Simultaneous $J/\psi{\rm and}~\Upsilon$ production in the color-singlet mode is not possible at ${\cal O}(\alpha_s^4)$

- The leading production mechanism refers to a mixed singlet-octet scheme, where Υ is formed in the color-singlet mode $g+g \rightarrow \Upsilon + g^*$ and J/ψ comes from the virtual gluon fragmentation $g^* \rightarrow c\bar{c}[{}^3S_1^8] \rightarrow J/\psi$.

- The fully octet modes are suppressed because of typically small values of the color-octet matrix elements (only important at high p_T).

- Color-singlet production of *P*-wave states $g+g \rightarrow \chi_b + \chi_c$ is possible at $\mathcal{O}(\alpha_s^4)$, but is suppressed by *P*-state wave functions and by the decay branching fractions $\chi_c \rightarrow J/\psi + \gamma$, $\chi_b \rightarrow \Upsilon + \gamma$.

-Simultaneous production of S-wave color-singlets is possible at $\mathcal{O}(\alpha_s^6)$ but is suppressed by extra α_s^2 and, especially, by the color algebra.

- Non-prompt production via $\Upsilon + b + \overline{b}$ states followed by the decays $b, \overline{b} \rightarrow J/\psi + X$ is suppressed by small decay branchings $Br \simeq 3 \, 10^{-3}$

- Color-singlet $B_c^{(*)} \bar{B_c}^{(*)}$ production is possible at $\mathcal{O}(\alpha_s^4)$

Computational technique and parameter setting

Standard QCD Feynman rules to calculate $g + g \rightarrow B_c^{(*)} + \bar{B}_c^{(*)}$

(basically, a repetition of S.P.Baranov, Phys. Rev. D 55, 2756 (1997))

but within the k_t -factorization approach. Advantages are in the ease of including higher-order corrections, which can be taken into account in the form of k_T -dependent parton densities (\rightarrow important modifications in the event kinematics). Technically, use the gluon polarization matrix in the form $\overline{\epsilon_g^{\mu} \epsilon_g^{*\nu}} = k_T^{\mu} k_T^{\nu} / |k_T|^2$ [Phys. Rep. 100, 1 (1983)].

Quark masses: $m_c = m_{\psi}/2 = 1.55$ GeV and $m_b = m_{\Upsilon}/2 = 4.8$ GeV (also $m_{B_c} = m_b + m_c$);

Factorization and renormalization scales: $\mu_F^2 = \mu_R^2 = \hat{s}/4$ (Lorentz-invariant choice symmetric w.r.t. the final particles)

 k_T -dependent gluon densities A0 (default), A+, A- taken from H.Jung *et al.*, Eur. Phys. J. C 70, 1237 (2010)

Radial wave functions of $B_c^{(*)}$ mesons $|\mathcal{R}_{B_c}(0)|^2 = 1.2 \text{ GeV}^3$ from potential model E.Bagan *et al.*, Z. Phys. C 64, 57 (1994)

Numerical results at LHCb Four-quark invariant mass spectrum at $\sqrt{s} = 13$ TeV

Differential cross section times muon branching fraction $Br^{\psi \to \mu\mu}Br^{\Upsilon \to \mu\mu} d\sigma (pp \to B_c \bar{B_c})/dM$

Transverse momentum distributions

Differential cross sections times muon branching fraction $Br^{\psi \to \mu\mu}Br^{\Upsilon \to \mu\mu} d\sigma (pp \to B_c \bar{B}_c)/dp_T$ integrated over all masses. Dash-dotted = Υ ; Dashed = J/ψ ; Solid = $\Upsilon + J/\psi$ system.

Azimuthal correlations between J/ψ and Υ mesons

Differential cross section times muon branching fraction integrated over several different mass intervals.

Summary of the LHCb perspectives

Integral $B_c \bar{B}_c$ rate: $\sigma(pp \to B_c \bar{B}_c) Br^{\Upsilon \to \mu\mu} Br^{\psi \to \mu\mu} \simeq 550$ fb after assuming $\Gamma \simeq 200$ MeV or applying color suppression factor

 $\sigma(\Upsilon + J/\psi) Br^{\Upsilon \to \mu\mu} Br^{\psi \to \mu\mu} \simeq 20 - 60 \text{ fb}$

Background from double parton scattering (dominant):

$$\sigma_{\rm DPS}(\Upsilon + J/\psi) = \sigma_{\rm incl}(\Upsilon) \,\sigma_{\rm incl}(J/\psi) \,/\,\sigma_{\rm eff}$$

where $\sigma_{\text{incl}}(J/\psi)Br^{\psi\to\mu\mu} \simeq 380 \text{ nb}, \ \sigma_{\text{incl}}(\Upsilon)Br^{\Upsilon\to\mu\mu} \simeq 6 \text{ nb}, \ \sigma_{\text{eff}} = 15 \text{ mb}$ known from [LHCb Collab., JHEP 1510, 172 (2015), JHEP 1511, 103 (2015)] $\sigma_{DPS}(\Upsilon+J/\psi)Br^{\Upsilon\to\mu\mu}Br^{\psi\to\mu\mu} \simeq 150 \text{ fb}$

- The signal is not small compared to what was already measured;

– The signal is not small compared to the background, clearly distinguishable due to resonant behavior \rightarrow perspective looks optimistic

Numerical results at D0 Standard production mechanisms at $\sqrt{s} = 1.96$ TeV

Experiment: $Br^{\psi \to \mu\mu}Br^{\Upsilon \to \mu\mu}\sigma_{fid}(pp \to J/\psi + \Upsilon) \simeq 27$ fb dash-dotted, singlet+octet at $\mathcal{O}(\alpha_s^4)$; dotted, color-octets at $\mathcal{O}(\alpha_s^4)$; dashed, color-singlets at $\mathcal{O}(\alpha_s^6)$; solid, non-prompt production via $\Upsilon b\bar{b}$ Sergey Baranov,

Resonant production mechanism at D0 Four-quark invariant mass spectrum at $\sqrt{s} = 1.96$ TeV

Cross section times muon branching fraction $Br^{\psi \to \mu\mu} Br^{\Upsilon \to \mu\mu} \sigma_{tot}(pp \to B_c \bar{B}_c) \simeq 20$ fb (too low to explain the data)

CONCLUSIONS

At LHCb,

- the expected production cross section amounts to approx. 20 fb; this is comparable with that has been measured successfully by other collaborations. The peaking signal is well recognizable over flat background. The measurements (and the detection of a tetraquark) look feasible.

At D0,

- the estimated cross section is about one order of magnitude below the data. The proposed mechanism can hardly explain the $J/\psi + \Upsilon$ events at D0, although the uncertainties are large. Detection of the tetraquark at the LHC (if takes place) could reduce theoretical uncertainties.

Thank you!