

Exclusive open-charm near-threshold cross sections in a coupled-channel approach

Timofey Uglov (MIPT, LPI)

Based on T. Uglov, Yu. Kalashnikova, A. Nefediev, G. Pakhlova, P. Pakhlov **JTEP Lett. 105, 1, 1-7 (2017)**

Charmonium: first data

July 2,2017 T.Uglov Exclusive open-charm near-threshold cross sections in a coupled-channel approach QFTHEP'17 2/15

1^{−−} states in e⁺e[−] annihilation

July 2,2017 T.Uglov Exclusive open-charm near-threshold cross sections in a coupled-channel approach QFTHEP'17 3/15

Inclusive fits

July 2,2017 T.Uglov Exclusive open-charm near-threshold cross sections in a coupled-channel approach QFTHEP'17 4/15

• Looks ugly.

• Use *inclusive* cross-section only. No information on exclusive channels cross-section is used.

 Various thresholds of the open charm modes are not regarded (no ψ↔DD transitions/rescattering)

K-matrix and amplitude

$$S = 1 + 2iA,$$

$$A = K(1 - iK)^{-1},$$

$$AA^{\dagger} = \frac{1}{2i}(A - A^{\dagger}).$$
Ensures unitarity
$$K_{ij} = \sum_{\alpha} G_{i\alpha}(s) \frac{1}{M_{\alpha}^2 - s} G_{j\alpha}(s),$$

$$G_{i\alpha}^2(s) = g_{i\alpha}^2 \frac{k_i^{2l_i + 1}}{\sqrt{s}} \theta(s - s_i)$$
Coupling constant
$$\Gamma_{i\alpha} \equiv \Gamma(s)$$

i runs over $D^{(*)}\overline{D}^{(*)}$ channels, α runs over ψ 's

$$(P^{-1}(s))_{\alpha\beta} = (M_{\alpha}^2 - s)\delta_{\alpha\beta} - i\sum_m G_{m\alpha}G_{m\beta}$$

$$\Gamma_{e\alpha} \equiv \Gamma(\psi_{\alpha} \to e^+ e^-) = \frac{\alpha g_{e\alpha}^2}{3M_{\alpha}^3}.$$

Electron width

$$\alpha \equiv \Gamma(\psi_{\alpha} \to [D^{(*)}\bar{D}^{(*)}]_{i}) = \frac{g_{i\alpha}^{2}}{M_{\alpha}^{2}}[p_{i}(M_{\alpha})]^{2l_{i}+1}$$
Partial decay width

$$A_{ij} = \sum_{\alpha\beta} G_{i\alpha}(s) P_{\alpha\beta}(s) G_{j\beta}(s) \qquad \sigma_i(s) = \frac{4\pi\alpha}{s^{5/2}} [p_i(s)]^{2l_i+1} \left| \sum_{\alpha,\beta} g_{e\alpha} P_{\alpha\beta}(s) g_{i\beta} \right|^2$$

Cross-section

Isospin-conjugated modes should be treated independently It doubles number of channels

- $D\bar{D},$
- $D\bar{D}^*,$
- $D_2\bar{D},$
- $[D^*\bar{D}^*]_{S=0}^P, \\ [D^*\bar{D}^*]_{S=2}^P,$
- $[D^*\bar{D}^*]_{S=2}^F,$

- 2 channels,
- 4 channels,
- 4 channels,
- 2 channels,
- 2 channels,
- 2 channels.

 $D^{0}D^{-}\pi^{+}$ is dominated by $D\bar{D}_{2}$ corrected to $\mathcal{B}(D_{2} \rightarrow D\pi)$ $(\mathcal{B}(D_{2} \rightarrow D\pi) + \mathcal{B}(D_{2} \rightarrow D^{*}\pi))$

ratio

 $\psi(2S), \ \psi(3770), \ \psi(4040), \ \psi(4160), \ \psi(4415)$

16 channels, 5 ψ -states

$$\{M_{\alpha}, \Gamma_{e\alpha}, g_{i\alpha}\}, \quad \alpha = \overline{1, 5}, \quad i = \overline{1, 16}, \quad \longrightarrow \quad 40 \text{ variables}$$

Isosin-conjuated channels have the same parameters, except for D-meson mass

$$\begin{split} |{}^{3}S_{1}\rangle &= -\frac{1}{2\sqrt{3}}|D\bar{D}\rangle + \frac{1}{\sqrt{3}}|D\bar{D}^{*}\rangle_{-} \\ & \overset{\text{heavy-quark spin}}{\text{symmetry}} -\frac{1}{6}|D^{*}\bar{D}^{*}\rangle_{P0} + \frac{\sqrt{5}}{3}|D^{*}\bar{D}^{*}\rangle_{P2}, \\ |{}^{3}D_{1}\rangle &= \frac{\sqrt{5}}{2\sqrt{3}}|D\bar{D}\rangle + \frac{\sqrt{5}}{2\sqrt{3}}|D\bar{D}^{*}\rangle_{-} + \frac{\sqrt{5}}{6}|D^{*}\bar{D}^{*}\rangle_{P0} & \longrightarrow 35 \\ & -\frac{1}{6}|D^{*}\bar{D}^{*}\rangle_{P2}, \\ g_{[D^{*}\bar{D}^{*}]P2,\alpha} &= -\sqrt{20} g_{[D^{*}\bar{D}^{*}]P0,\alpha}, \quad \alpha = 1, 3, 5, \\ g_{[D^{*}\bar{D}^{*}]P0,\alpha} &= -\sqrt{5} g_{[D^{*}\bar{D}^{*}]P2,\alpha}, \quad \alpha = 2, 4, \end{split}$$
 ($\sum BW \Rightarrow 75 \\ variables$)

$$\chi_{\text{tot}}^{2} = \chi_{\text{exp}}^{2} + \sum_{\alpha=1}^{5} \left\{ \left(\frac{M_{\alpha} - M_{\alpha}^{\text{PDG}}}{50 \text{ MeV}} \right)^{2} + \left(\frac{\Gamma_{e\alpha} - \Gamma_{e\alpha}^{\text{PDG}}}{0.5 \text{ MeV}} \right)^{2} + \left(\frac{\sum_{i=1}^{16} \Gamma_{i\alpha}}{200 \text{ MeV}} \right)^{2} \right\}$$

July 2,2017 T.Uglov Exclusive open-charm near-threshold cross sections in a coupled-channel approach QFTHEP'17 10/15

Fit results (II)

	ψ_1	ψ_2	ψ_{3}	ψ_{4}	ψ_5
PDG name	$\psi(2S)$	$\psi(3770)$	$\psi(4040)$	$\psi(4160)$	$\psi(4415)$
$M, { m MeV}$	3686*(fixed)	3782 ± 1	4115 ± 14	4170 ± 7	4515 ± 18
Coupling constants $g_{i\alpha}$ ($\alpha = 15, i = D\overline{D}, D\overline{D}^*, etc$					
$D\bar{D}$	3.0 ± 0.3	-1.8 ± 0.3	-0.1 ± 0.1	0.3 ± 0.1	-0.1 ± 0.1
$D\bar{D}^*$	-4.7 ± 0.5	-3.1 ± 0.3	2.4 ± 0.2	-0.0 ± 0.7	-0.7 ± 0.2
$[D^*\bar{D}^*]_{S=0}^P$	4.8 ± 0.5	6.9 ± 0.9	-0.1 ± 0.2	0.6 ± 0.5	-0.3 ± 0.1
$[D^*\bar{D}^*]_{S=2}^P$	-21.7 ± -2.3	-3.1 ± -0.4	0.5 ± 0.9	-0.3 ± -0.2	1.5 ± -0.3
$[D^*\bar{D}^*]^F_{S=0}, \mathrm{MeV}^{-2}$	62.2 ± 15.1	-1.6 ± 5.4	-1.0 ± 2.8	8.0 ± 1.4	0.2 ± 0.6
$D_2 \bar{D}, \mathrm{MeV^{-1}}$	-8.2 ± 29.3	25.2 ± 7.7	-23.5 ± 3.3	-1.0 ± 7.4	-1.5 ± 1.4
Partial decay widths $\Gamma_{i\alpha}$, MeV					
e^+e^-	2.354*(fixed)	0.2 ± 0.0	1.6 ± 0.3	0.7 ± 0.4	1.4 ± 0.3
D^+D^-	-	5.6 ± 1.7	0.4 ± 0.8	4.3 ± 2.6	0.5 ± 1.0
$D^0 \bar{D}^0$	-	7.5 ± 2.2	0.4 ± 0.8	4.5 ± 2.7	0.5 ± 1.0
$D^{+}D^{*-}$	-	-	110.7 ± 23.5	0.0 ± 0.5	32.8 ± 17.4
$[D^*\bar{D}^*]_{S=0}^P$	_	-	0.1 ± 0.2	3.6 ± 6.5	5.9 ± 2.6
$[D^*\bar{D}^*]^P_{S=2}$	_	-	1.2 ± 6.8	0.7 ± 0.3	118.0 ± 729.4
$[D^*\bar{D}^*]^F_{S=0}$	-	-	0.2 ± 1.0	58.6 ± 22.9	2.3 ± 14.2
$D_2^+ D^-$	-	-	-	-	11.7 ± 21.1

July 2,2017 T.Uglov Exclusive open-charm near-threshold cross sections in a coupled-channel approach QFTHEP'17 11/15

- No evidence for Y decays to open-charm hadrons
- No vacant places for Y in $c\overline{c}$ spectroscopy
- No Y in inclusive charm cross-section

- New higher precision data are needed to fix couplings and masses of ψ -states
- For DD*, D*D* and higher states cross section decomposition to it's helicity components is required
- Fit function, which correctly accounts for the real part of the loop
- Use unitarity to identify the nature of the Y states

- A fit to the data in the major open-charm channels for sqrt(s) = 3.7 4.7 GeV is performed.
- Unitarity is preserved up to the minor contribitions like DsDs.
- \bullet A good χ^2 demonstrates that the suggested approach is able to expain all data simultaniously.
- Waiting for a new data and refined fit functions to solve the ψ and Y puzzles.