

XFEL - Project status

Martin Sachwitz

on behalf of the XFEL Collaboration European X-Ray Free-Electron Laser Facility 22761 Hamburg, Germany

XFEL History – TESLA Project 2001

TESLA

The Superconducting Electron-Positron Linear Collider

with an Integrated X-Ray Laser Laboratory

Technical Design Report

XFEL Purpose of the European XFEL - Microscope

It is simply a Microscope

European F

Purpose of the European XFEL – 3D Microscope

5

- It is simply a Microscope
 - Even better: 3D Microscope

Purpose of the European XFEL – 3D Microscope

Three-Dimensional Reconstruction of the Giant Mimivirus Particle with an X-Ray Free-Electron Laser Tomas Ekeberg *et al.* Phys. Rev. Lett. 114, 098102 Published 2 March 2015

European XFEL - High speed camera

Imaging of "big" and "small" non-crystalline samples

European XFEL - **XFEL** High speed camera

Imaging Shock Waves in Diamond with Both High Temporal and Spatial Resolution at an XFEL; Andreas Schropp et al; Scientific Reports, 2015; DOI: 10.1038/srep11089

The scientists energized the ruthenium end of the molecule (left) with an optical laser pulse and, using X-ray FEL pulses, could see changes in the molecule as the electron moved to the cobalt atom (right). Technical University of Denmark and Lund University

The full reaction cycle revealed with complementary tools

S. Canton, et al., accepted Nat. Commun. 2015

What do you need to build such a unique camera?

high resolution (0.05 nm laser wavelength)

Project	LCLS,	SACLA,	European	SwissFEL,	PAL XFEL,
	USA	Japan	XFEL	Switzerland	Korea
Wavelength range (nm)	0.12-4.4	0.06-0.3	0.05-4.7	0.1–7	0.06-10

high speed (27 000 flashes/sec, fsec duration

Pulses/second	120	60	27000	100	60
Photons/pulse	10 ¹² -10 ¹³	2 x 1011	up to 1014	$\sim 3.6 \times 10^{10}$	1011-1013

brilliance (5 10³³ photons/sec/mm² mrad² /0.1%bandwith)

Peak brilliance	1.5 x 10 ³³	1 x 10 ³³	5 x 10 ³³	7 x 10 ³²	1.3 x 10 ³³

- Good, experienced friends not only from Europe but from all over the world
- Right area (earthquake, tsunami....) with high level infrastructure
- A long Tunnel with an

European

- Electron-Gun,
- Electron Accelerator part,

FEL What do you need to build an XFEL

- Electron to Light Machine (called Undulator),
- Experimental setups

Schleswig-Holstein-

XFEL European XFEL layout

Hamburg

Undulator/Beamline Tunnels Schenefeld sdorfer Born **Injector at DESY Experiment Hall** campus in Schenefeld 500 m DK Bahrenfe **Linear Accelerator** 1.9 km

17.5 GeV

XFEL XFEL site in Hamburg/Schenefeld

XFEL After construction (computer simulation)

QFTHEP Samara – 27th June 2015 Martin Sachwitz, on behalf of the European XFEL

XFEL XFEL Facility Underground

- Three construction sites
- 5.8 km tunnels
- 12,000 m² surface are buildings
- 150,000 m³ of underground building volume

European **XFEL**

	LCLS	SACLA	European XFEL
Abbreviation for	Linac Coherent Light Source	SPring-8 Angstrom Compact Free Electron Laser	European X-Ray Free-Electron Laser
Location	California, USA	Japan	Germany
Start of commissioning	2009	2011	2016
Accelerator technology	normal conducting	normal conducting	superconducting
Number of light flashes per second	120	60	27 000
Minimum wavelength of the laser light	0.15 nanometres	0.08 nanometres	0.05 nanometres
Maximum electron energy	14.3 billion electron volts (14.3 GeV)	6-8 billion electron volts (6-8 GeV)	17.5 billion electron volts (17.5 GeV)
Length of the facility	3 Kilometer	750 Meter	3.4 Kilometer
Number of undulators (magnet structures for light generation)	1	3	3, upgradeable to 5
Number of experiment stations	3-5	4	6, upgradeable to 10
Peak brilliance [photons / s / mm ² / mrad ² / 0.1% bandwidth]	2·10 ³³	1.10 ³³	5·10 ³³
Average brilliance [photons / s / mm ² / mrad ² / 0.1% bandwidth]	2.4·10 ²²	1.5·10 ²³	1.6-10 ²⁵

- This enables the European XFEL to generate many more light flashes per second than the other two facilities.
- The number of usable light flashes is increased as well.
- Certain experiments will thus only be possible at the European XFEL, and others can be carried out much faster.
- The higher number of electron bunches also allows more experiment stations to be operated simultaneously.

European

WEBCAMS

http://www.xfel.eu/project/webcams

European XFEL GmbH

(GmbH = a non-profit limited liability company under German law)

11 countries are participating in the project

Denmark, France, Germany, Hungary, Italy,

Poland, Russia, Slovakia, Spain, Sweden, and Switzerland

- Construction costs of the facility: 1.15 billion Euro
- Germany covers 58% of these costs.

Russia bears 27% and the other international

partners between 1% and 3%.

- Construction started in early 2009
- Commissioning is planned for 2016

XFEL Shareholder of the European XFEL GmbH

19

Present (bold) or likely future shareholder of the European XFEL GmbH		Country
DASTI (Danish Agency for Science, Technology and Innovation)		Denmark
<u>CEA</u> (Commissariat à l'énergie atomique et aux énergies alternatives), <u>CNRS</u> (Centre national de la recherche scientifique)		France
DESY (Deutsches Elektronen-Synchrotron)		Germany
NIH (National Innovation Office)		Hungary
Republic of Italy, represented by the Ministero dell'Istruzione, dell'Università e della Ricerca		Italy
NCBJ (National Centre for Nuclear Research)		Poland
OJSC RUSNANO (Open Joint Stock Company RUSNANO)		Russia
Slovak Republic, represented by the Ministry of Education		Slovakia
Kingdom of Spain, represented by the Ministerio de Economía y Competitividad		Spain
VR (Vetenskapsrådet, Swedish Research Council)		Sweden
Swiss Confederation, represented by Staatssekretariat für Bildung und Forschung	•	Switzerland

European XFEL

Russian Contribution via Open Joint Stock Company RUSNANO

- Press release RUSNANO 15th March 2015:
- Строительство Европейского рентгеновского лазера на свободных электронах (European XFEL) международный научный проект с участием 11 стран, реализуемый в Гамбурге (Германия).
- РОСНАНО представляет в данном проекте интересы
 Российской Федерации и осуществляет его
 финансирование по поручению Правительства.
- Объем инвестиций РОСНАНО в XFEL составит €306,4 млн (в ценах 2005 года)
- На настоящий момент доля ОАО «РОСНАНО» в XFEL составляет 26,24%.

European

XFEL Large Russian Contribution

WP1 RF System	BINP Novosibirsk	
WP10 Module Test Facility	IHEP Protvino	
WP12 Warm Magnets	NIIEFA St.Petersburg	
WM13 Cryogenics	IHEP Protvino	
WP14 Injector	JINR Dubna	
WP17 Standard Beam Diagnostics	IHEP Protvino	
WP18 Special beam Diagnostics	INR Troitsk	
WP19 Warm Vacuum	BINP Novosibirsk	
WP20 Beam Dump	IHEP Protvino	
WP28 Control Systems	IHEP Protvino	
WP33 Tunnel Installation	IHEP Protvino	
WP34 Utilities	BINP Novosibirsk	

WP21 Undulators **BINP Novosibirsk** WP24 Photon Diagnostics **PhTI St. Petersburg** WP26 Detector Development **JINR Dubna** Some well know partners & a new

management.

- 100 accelerator modules
- 800 accelerator cavities
- 1.3 Ghz / 23.6 MV/m
- 25 RF station 5.2 MW each

23

XFEL Tunnel engineering

XFEL Tunnel engineering

XFEL Tunnel is finished 2013

XFEL Main components of the accelerator - Gun

XFEL XFEL RF Gun Commissioning

XFEL XFEL – Gun at work

February 10th : First photo elektrons at XFEL !

Screen picture of the first photo electrons at XFEL – 3mm Aperture, 20 Bunche, 10 Hz, ca. 2nC

XFEL Main components of the accelerator - Linac

XFEL LINAC Tunnel February 2013

34

XFEL Superconductive Cavities

XFEL Warm and Cold Cavities

- Simple trick: apply high frequent alternating field
- Move the accelerating electric field *with* the electrons
- Electrons always attracted from the positive plate in front
- Therefore acceleration over long distances possible

XFEL Cavity - Material

cavity material		RRR 300 niobium
type of accelerating structure		standing wave
accelerating mode		TM010, π-mode
fundamental frequency	f _{RF} [MHz]	1,300
active length	<i>L</i> [m]	1.038
nominal gradient	E _{acc} [MV/m]	23.6
quality factor	Qo	>10 ¹⁰
cell-to-cell coupling	K _{cc} [%]	1.87
iris diameter	[mm]	70

RRR 300 niobium

XFEL Cavity – E gradient

cavity material		RRR 300 niobium
type of accelerating structure		standing wave
accelerating mode		TM010, π-mode
fundamental frequency	f _{RF} [MHz]	1,300
active length	<i>L</i> [m]	1.038
nominal gradient	E _{acc} [MV/m]	23.6
quality factor	Qo	>1010
cell-to-cell coupling	K _{cc} [%]	1.87
iris diameter	[mm]	70

XFEL Cavity - Geometry

38

cavity material		RRR 300 niobium
type of accelerating structure		standing wave
accelerating mode		TM010, π-mode
fundamental frequency	<i>f_{RF} [</i> МНz]	1,300
active length	<i>L</i> [m]	1.038
nominal gradient	E _{acc} [MV/m]	23.6
quality factor	Q_o	>10 ¹⁰
cell-to-cell coupling	K _{cc} [%]	1.87
iris diameter	[mm]	70

XFEL Cavity - Frequency

R/Q	[Ω]	1,036
Epeak / Eacc		2.0
B _{peak} / E _{acc}	[mT / MV/m]	4.26
Tuning range	[kHz]	± 300
$\Delta f / \Delta L$	[kHz / mm]	315
Lorentz force detuning constant	K _{Lor} [Hz / (MV/m) ²)	1
Q _{ext} of input coupler		4.6 × 10 ⁶
cavity bandwidth f / Q_{ext}	[Hz] FWHM	283
fill time	[ms]	780
number of HOM couplers		2

European

XFEL Cavity - Bandwith

XFEL Cavity - Higher Modes

R/Q	[Ω]	1,036
E _{peak} / E _{acc}		2.0
B _{peak} / E _{acc}	[mT / MV/m]	4.26
Tuning range	[kHz]	± 300
$\Delta f / \Delta L$	[kHz / mm]	315
Lorentz force detuning constant	<i>K_{Lor}</i> [Hz / (MV/m)²)	1
Q _{ext} of input coupler		4.6 × 10 ⁶
cavity bandwidth f / Q_{ext}	[Hz] FWHM	283
fill time	[ms]	780
number of HOM couplers		2
gher Order Mode excitation has to be avoided.	н	OM coupler

 Status of the European XFEL

 European

 XFEL

 Here the famous Q vs E behaviour of Cavities

42

European **XFEL** Hydrogen is a disaster

XFEL Cleaning at Zanon (Italy)

QFTHEP Samara – 27th June 2015 Martin Sachwitz, on behalf of the European XFEL

XFEL Localization of quenching

XFEL Assembling of Accelerator Modules

- Helium vessel fabrication
- Titanium Tube and 2-phase line

Status of th

XFEL Accelerator Module (Cryomodule)

XFEL Accelerator Module (Cryomodule)

XFEL Frequency Tuner

Mechanics:

Series fabrication ongoing.

Drive unit:

- Documentation reports decided.
- First units have FAT and been delivered to CEA and DESY.
- Ramp up to series rate has been achieved.

Piezo system:

- Continuing tests of permanent FLASH setup.
- Series production of fixtures ongoing.

QC testing:

 during module installation at Saclay (INFN contribution).

55

XFEL Accelerator Module Test Facility – AMTF Hall

New building
 especially designed and
 build for the test of the
 Accelerator modules.

XFEL Installation Sequence

XFEL Linac tunnel installation

XFEL Linac tunnel with first modules installed

QFTHEP Samara – 27th June 2015 Martin Sachwitz, on behalf of the European XFEL

XFEL Almost 800 Magnets (produced at Efremov, Budker)

QFTHEP Samara – 27th June 2015 Martin Sachwitz, on behalf of the European XFEL

European XFEL Let there be light! Fiat flux! Да будет свет!

XFEL Free-Electron Laser - ingredients

A Free-Electron Laser is a light source exploiting the spontaneous and/or induced emission of a relativistic electron beam "guided" by the periodic and static magnetic field generated by an undulator (typ. 0.5 - 1 T).

European

XFEL Self Amplified Spontaneous Emission (SASE)

light wave

the transversally accelerated electrons emit synchrotron radiation

slippage

electrons move slower than the co-propagating electromagnetic light wave

Condition for sustained energy transfer leads to exactly the same wavelength as in undulator radiation

- sustained energy transfer from the electron to the light wave is guaranteed if the light wave slips forward by λ/2 per half period of the electron trajectory, i.e. per half period of the undulator (λ_u/2)
- this leads to **constructive interference** since the relative phase between the synchrotron radiation emitted by the electron and the co-propagating field remains constant

European

XFEL Self Amplified Spontaneous Emission (SASE)

 Electrons are micro-bunched in the periodic potential and groups of electrons become
 point-like radiation sources

- The FEL photon pulse energy is growing exponentially

XFEL Undulator production finished April 2015

	SASE1/2	SASE3	
λ _o [mm]	40	68	
Operational Gap	10-20	10-25	
Range [mm]			
K-Range	3.9-1.65	9.0-4	
Radiation Wavelength			
Range [nm]			
@ 17.5 GeV	0.147-0.040	1.22-0.27	
@ 14.0 GeV	0.230-0.063	1.90-0.42	
@ 8.5 GeV	0.625-0.171	5.17-1.15	
# of Segments	35	21	
System Length [m]	213.5	128.1	
			-

Courtesy J. Pflüger

65

QFTHEP Samara - 27th June 2015 Martin Sachwitz, on behalf of the European XFEL

European

XĖEL

Main components of the accelerator -Experiments

XFEL X-ray Beam Transport and Diagnostics

67

QFTHEP Samara – 27th June 2015 Martin Sachwitz, on behalf of the European XFEL

XFEL Experiment Hall, October 2014

QFTHEP Samara – 27th June 2015 Martin Sachwitz, on behalf of the European XFEL

70

XFEL Construction of HED-Enclosure 11.2.2015

XFEL Floor coatings

EuropeanXFELFloor coating SASE1

73

Femtochemistry, Photosynthesis an

XFEL Fundamental Timescales

European

FEL Schematic distribution of the instruments

74

European XFEL

Instruments

- SPB: Ultrafast Coherent Diffraction Imaging of Single Particles, Clusters, and Biomolecules Structure determination of single particles: atomic clusters, bio-molecules, virus particles, cells.
- Hard X-rays MID: Materials Imaging & Dynamics Structure determination of nano-devices and dynamics at the nanoscale.
 - FXE: Femtosecond X-ray Experiments Time-resolved investigations of the dynamics of solids, liquids, gases
 - High Energy Density Matter Investigation of matter under extreme conditions HED: using hard X-ray FEL radiation, e.g. probing dense plasmas

SQS: Small Quantum Systems

- Investigation of atoms, ions, molecules and clusters in intense fields and non-linear phenomena
- SCS: Soft x-ray Coherent Scattering/Spectroscopy Electronic and real structure, dynamics of nano
 - systems and of non-reproducible biological objects

75

Eur X	opear FE	Status of the European XFEL				
)Е 1		Single Particles, Clusters and Biomolecules (SPB)	AGIPD	Gotthard V2	Fast CCD	
SAS	ЫЕ	Materials Imaging & Dynamics (MID)	AGIPD	Gotthard V2	0	
SASE 2	Hig	Femto Second X-ray Experiments (FXE)		Gotthard V2	Gotthard V1	
		High Energy Density Matter (HED)	-	Gotthard V2		
SASE 3	Low E	Small Quantum Systems (SQS	DSSC	Fast CCD	MCP 🥗	
		Spectroscopy and Coherent Scattering (SCS)	DSSC	Fast CCD	MCP 💝	Small pnCCD

XFEL Present planning (T. Haas)

- SASE1
 - Hutch Construction: Apr Sep '15
 - Infrastructure: Oct '15 Mar '16
 - All Hutches and Infrastructure done (Instrument Installation possible): March 2016
 - 9 months for Instrument Installation
- SASE3
 - Hutch Construction: Jul Oct '15
 - Infrastructure: Nov '15 Apr '16
 - All Hutches and Infrastructure done (Instrument Installation possible): April 2016
 - 9 months for Instrument Installation
- SASE2
 - Hutch Construction: Oct '15 Jan '16
 - Infrastructure: Feb Jun '16
 - All Hutches and Infrastructure done (Instrument Installation possible): Jun 2016
 - 10 months for Instrument Installation

XFEL XHQ building, Jan. 2015

XFEL XHQ building, moving in late spring 2016

XFEL Guest house, canteen

EuropeanStatus of the European XFELEuropeanFrom the pr	oject general schedule			
WHEN	MILESTONE			
30 June 2015	Injector Tunnel closed			
31 January 2016 => 31 March 2016	SASE1 experimental area ready for instrument (FXE, SPB/SFX) installation			
30 June 2016	Linac tunnel closed			
31 December 2016	First SASE1 lasing possible			
30 April 2017	SASE1 instruments begin operation			

European XFEL EU/ DESY Users' Meeting 2015 > 600 people!

83

86

XFEL Acknowledgments/sources

www.xfel.eu

- talks at user meetings Jan/April 2015
- A. Altarelli, H. Weise, F. Brinker, A. Schwarz, T. Haas,
- W. Gawelda, A. Scherz, M. Meyer, T. Tschentscher,
- A. Mancuso, C. Bressler, H. Sinn, M. Hüning
- H. Weise www.desy.de/~weise

