Jet-gap-jet events at CMS

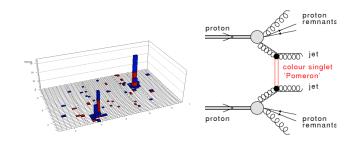
Ksenia Shchelina 1 on behalf of the CMS collaboration $$^{1}{\rm SINP}$$ MSU

QFTHEP '15 Jun 27, 2015

Ksenia Shchelina (SINP MSU)

Jet-gap-jet events at CMS

27.06.2015 1 / 19

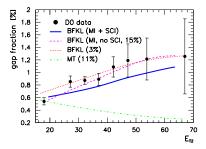

・ロト ・四ト ・ヨト ・ヨト

Jet-gap-jet event:

Parton scattering (2->2) through hard **color singlet exchange**¹

Event signature:

• Two high p_T jets, separated by a large **rapidity gap**


¹A. Mueller, W. Tang, Phys. Lett. B284 (1992)

Ksenia Shchelina (SINP MSU)

Jet-gap-jet events at CMS

Motivation

- The absence of particles between the jets signature of a diffractive process
- Four-momentum transfer squared is larger than in standard diffractive events
- Can be understood in BFKL-inspired pQCD approach to parton-parton scattering

D0 Collaboration, Phys. Lett. B440 (1998) 189; R. Enberg, G. Ingelman, L. Motyka, Phys.Lett.B524:273-282,2002

The study of CSE events may allow:

→ to disentangle the BFKL dynamics from the DGLAP evolution; → to estimate the value of S^2 (gap survival probability): sensitive to the contribution from rescattering processes

Samples

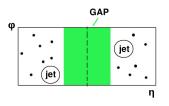
Data:

- Run 2010 A,B
- $\sqrt{s} = 7$ TeV
- $L = 8 \ pb^{-1}$
- low pile-up (2 3 interactions per bunch crossing)

Monte Carlo (MC):

- Background: PYTHIA6 Tune Z2*
- Signal: HERWIG color singlet exchange (Mueller and Tang model, reweighted to reproduce rising of CSE contribution with jet p_T scale, observed in the data)

Measurement in three exclusive bins of p_T^{jet2} : 40 - 60, 60 - 100, 100 - 200 GeV


Selection cuts

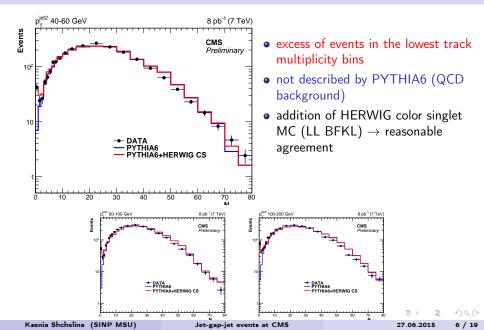
Aim: study gap fraction, defined as $N_{events_with_gap}/N_{all_dijet_events}$, as function of p_T^{jet2} and $\Delta \eta$ between two leading jets.

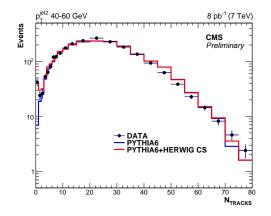
Event selection:

- $N^{vtx} = 0$ or 1, $|z^{vtx}| < 24$ cm
- at least 2 jets (R=0.5) in event
- two leading jets

in different hemispheres and $|\eta^{\text{jet1,jet2}}| > 1.5$

Gap definition:

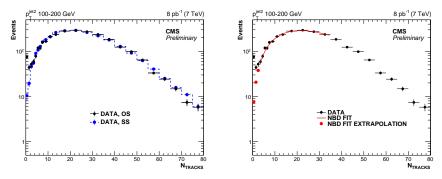

fixed η window between two leading jets, devoid of charged particles.


 \Rightarrow Looking for tracks in $|\eta| < 1$ window:

・ロト ・四ト ・ヨト ・ヨト

- $p_t > 0.2 \text{ GeV}$
- standard CMS track quality requirements

Charged multiplicity in $|\eta|<1$ window



 $f_{CSE}:$ ratio of event yields in first bins after background subtraction to total yield.

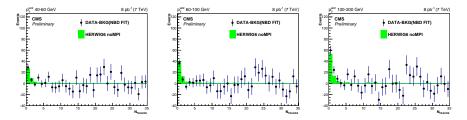
ヘロト ヘヨト ヘヨト

Background: QCD dijet events

• Several approaches to background estimation were tested:

1) Data-driven: using orthogonal sample of dijet events – i.e. with 2 leading jets in the same hemisphere ('SS sample')

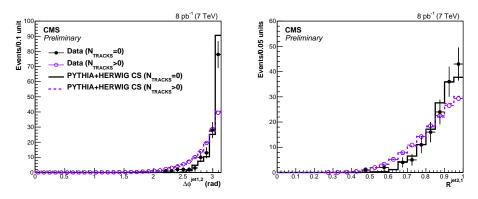
2) Negative Binomial Distribution fit (NBD) to the multiplicity tail extrapolated into the signal region


 \rightarrow use NBD fit as the main approach; SS sample – for systematic check

Ksenia Shchelina (SINP MSU)

< **₽** > < **≥** >

Use HERWIG CS MC for guidance


→ The signal MC includes simulation of MPI interactions (via JIMMY package) ⇒ Divide MC signal events into MPI/noMPI interactions subsamples. Compare to the data after background subtraction (MPI subtracted).

• Excess of signal over background prediction also in the 2nd multiplicity bin and also the 3rd bin for the highest p_T^{jet2} selection. The excess is described by HERWIG noMPI.

•Signal is defined in 0-1 bins for $p_T^{\text{jet2}} = 40 - 60$ and 60 - 100 GeV and 0-2 bins for the $p_T^{\text{jet2}} = 100 - 200$ GeV bin.

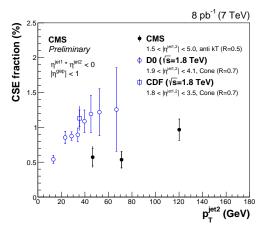
0-multiplicity events: $\Delta \phi$ and $R = \frac{p_T^{j_{et1}}}{p_T^{j_{et1}}}$

- Data from 0-multiplicity bin for three p_T^{jet2} samples
- The peaks in the distributions at $\Delta\phi^{jet1,2}=\pi$ and $R^{jet2,1}=1$ are more pronounced for events with no tracks
- The CSE dijets are more balanced in azimuthal angle and momentum than the non-CSE ones.

Ksenia Shchelina (SINP MSU)

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Sources:

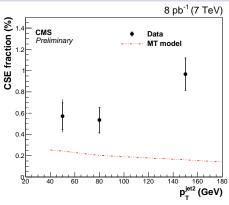

- Background subtraction uncertainty
- Jet-energy scale (JES) uncertainty
- Track p_T threshold
- Track quality

• Results are presented as fractions: many systematic uncertainties cancel in the ratio — hence systematic uncertainties smaller than statistical ones

• The average systematic uncertainty in the f_{CSE} vs p_T^{jet2} measurement is 10-15%.

イロト イポト イヨト イヨト

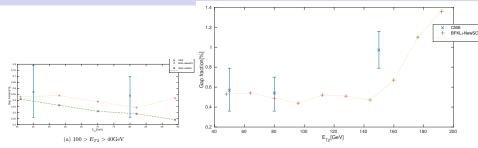
f_{CSE} vs p_T at CMS compared to the earlier data


- A suppression of the CSE fraction measured at $\sqrt{s} = 7$ is observed with respect to those at lower energies
- behavior is in agreement with observations reported by D0 and CDF: the gap fraction decreases by a factor of 2.5 ± 0.9 and 3.4 ± 1.2 , respectively, when \sqrt{s} increases from 0.63 TeV to 1.8 TeV.

Ksenia Shchelina (SINP MSU)

Jet-gap-jet events at CMS

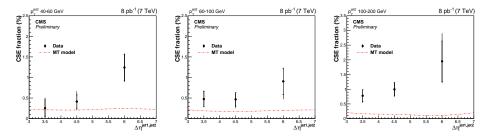
27.06.2015 12 / 19


f_{CSE} vs p_T

- Modest increase with p_T
- Comparison with the theoretical prediction of the Mueller and Tang model (no simulation of MPI).
- The gap fractions are plotted relative to the standard LO QCD dijet production, calculated with PYTHIA6-Z2*.
- The MT prediction does not reproduce the rising behavior of $f_{\rm CSE}$ with $p_T^{\rm jet2}$, as already observed for the 1.8 TeV data. It also underestimates the fractions.

Ksenia Shchelina (SINP MSU)

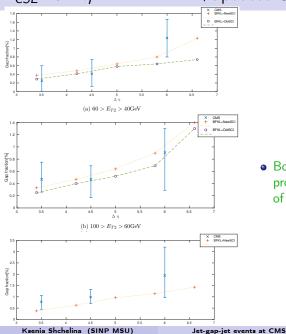
f_{CSE} vs p_T : BFKL+updated SCI model



- Preliminary results by A. Ekstedt, R. Enberg, G. Ingelman and L. Motyka private communication
- BFKL equation solved numerically at NLL²
- Soft color interaction model (SCI): color transfer via very soft gluon exchanges between partons (old SCI) or strings (new SCI; more color screening, smaller suppression)
- For large p_T scales the old SCI model destroys too many gaps
- \Rightarrow modified SCI model relatively good description of the gap fraction distribution as a function of p_T

 ²R. Enberg, G. Ingelman and L. Motyka, Phys. Lett. B 524, 273 (2002) [hep-ph/0111090]

 Ksenia Shchelina (SINP MSU)
 Jet-gap-jet events at CMS
 27.06.2015
 14 / 19


 f_{CSE} vs $\Delta\eta^{jet1,jet2}$

- The gap fraction increases with $\Delta \eta_{jj}$, although uncertainties are large at high $\Delta \eta$.
- The data are compared with the prediction of the MT model
- The MT model does not reproduce the growth of $f_{\rm CSE}$ with $\Delta \eta_{\rm jj}$, and underestimates the measured gap fractions.

Ksenia Shchelina (SINP MSU)

f_{CSE} vs $\Delta \eta^{jet1, jet2}$: BFKL+updated SCI model

• Both of the SCI implementations provide a good description of f_{CSE} vs $\Delta\eta$

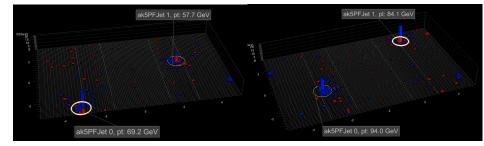
▲ 同 → → ● 三

27.06.2015 16 / 19

• The fraction of dijet events with a rapidity gap to all dijet events has been measured as a function of the second leading jet p_T^{jet2} and as a function of the size of the pseudorapidity interval between the jets $\Delta \eta_{\text{ii}}$.

The measured CSE fractions are compared

• to the results of the D0 and CDF collaborations, obtained at center-of-mass energies of 0.63 and 1.8 TeV.


 \rightarrow A suppression of the CSE fraction measured at $\sqrt{s} = 7$ TeV is observed with respect to those at lower energies — a behavior consistent with the suppression seen in the Tevatron data when the center-of-mass energy rises from 0.63 TeV to 1.8 TeV.

- to the Mueller and Tang (LL BFKL) model predictions
- to the 'numerical NLL BFKL+updated SCI' model predictions

• More models coming (including NLL BFKL calculations by Kepka, Marquet, Royon (Phys. Rev. D83 (2011) 034036))

BACKUP

(日) (四) (注) (注)

Ksenia Shchelina (SINP MSU)

Jet-gap-jet events at CMS

 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >
 < □ >