Associative production of Υ and open charm hadrons at LHCb

Associative production of Υ and open charm hadrons at LHCb ${\tt QFTHEP'2015,\ Samara}$

A. Berezhnoy and A. Likhoded

SINP MSU, IHEP

27.06.2015

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Introduction

A lot of new data on multiple heavy quark production have been obtained by experiments at LHC.

- B_c (seems pQCD underestimates the cross section values);
- B_c(2S) [Aad et al.(2014)];
- double open charm (the cross section values in accordance with DPS, p_T distributions contradict DPS)[Aaij et al.(2012b)];
- J/ψ + c (the cross section values in accordance with DPS, p_T distributions contradict DPS)[Aaij et al.(2012b)];
- double J/ψ (SPS +CS?)[Aaij et al.(2012a)].

In some cases the obtained cross section values are unexpectedly large and can not be explained within single parton scattering approach (SPS).

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Briefly about double parton scattering (DPS)

Within the simplest variant of DPS correlations in longitudinal partonic momenta in the initial hadron are neglected (but we should be careful: $x_1 + x_2 \le 1$):

$$D(x_1, x_2) \sim D(x_1) \cdot D(x_2)$$

This leads to the formula

$$\sigma_{A_1A_2}^{\rm DPS} = \frac{1}{m} \frac{\sigma_{A_1}^{\rm SPS} \sigma_{A_2}^{\rm SPS}}{\sigma_{eff}},$$

where $\sigma_{A_1}^{\rm SPS}$ and $\sigma_{A_2}^{\rm SPS}$ are the cross section values of the processes A_1 and A_2 within SPS, m = 1 for different A_1 and A_2 , m = 1/2 for identical A_1 and A_2 , and σ_{eff} is the parameter of DPS model obtained from the experimental data [Abe et al.(1997), Abazov et al.(2010)].

Surprisingly successful in predicting of the cross section values for the kinematical condition of the LHCb experiment!

However the problems still remain: DPS fails in describing of some differential distributions (see for example J/ψ -distribution on p_T , [Aaij et al.(2012b)]).

Why $\Upsilon + c$ could be interesting?

- Simple for estimation within pQCD (6 LO diagrams v.s. 31 for double J/\u03c6 production in gluonic interaction).
- Can be researched at LHC.
- Very interesting to compare with the researched processes of double $J/\psi + c$ and double open charm production.

For $J/\psi + c$ and double open charm production two pairs of heavy quarks are produced in different partonic interactions. Can this four quark transform into hadrons mutually? For $\Upsilon + c$ production process there is no such effect. This is why one could suppose that DPS will work better.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Figure : The examples of LO diagrams for the $\Upsilon + c$ production process.

By analogy with investigated in details production of P-states of B_c :

$$\frac{\sigma(gg \to \chi_b + c)}{\sigma(gg \to \Upsilon_{\rm direct} + c)} \sim 10\% \div 20\%$$

Taking into account that $Br(\chi_{b0} \to \Upsilon) \approx 1.8\%$, $Br(\chi_{b1} \to \Upsilon) \approx 34\%$ and $Br(\chi_{b2} \to \Upsilon) \approx 19\%$:

$$\frac{\sigma(gg \to \chi_b + c\bar{c}, \ \chi_b \to \Upsilon)}{\sigma(gg \to \Upsilon + c\bar{c})} \lesssim 6\%$$

(*ロト *理 * * 目 * * 目 * ・ 目 * のへで

Interaction with the charm quark from the sea within SPS

 Figure : The examples of LO diagrams for the $\Upsilon + c$ production process.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

It was first shown in [Baranov(1997)], that the interaction with heavy sea quark can essentially contribute to the multiple heavy quark production. But for this process it can be neglected:

• $gc \rightarrow \Upsilon_{ ext{direct}}gc$ is suppressed by additional order of α_s .

SPS vs DPS All SPS+LO QCD contribution (LHCb):

$$\frac{\sigma_{\rm SPS}^{\Upsilon+c}}{\sigma_{\rm LHCb}^{\Upsilon}} \sim 0.2 \div 0.6\%.$$

Alternative way to estimate SPS (gluon splitting):

According to LEP data the probability $P_{\text{LEP}}^{g \rightarrow c\bar{c}}$ to produce an additional $c\bar{c}$ -pair in the heavy quark production in e^+e^- -annihilation via gluon splitting about 2.4% [Akers et al.(1995a), Akers et al.(1995b)].

Thus it could be supposed that gluon associated with Υ will produce c-quark in 2% of events.

$$\frac{\sigma_{\rm SPS}^{\Upsilon + c}}{\sigma_{\rm LHCb}^{\Upsilon}} \approx P_{\rm LEP}^{g \to c\bar{c}} \cdot k \sim 2\%$$

$$k = \frac{[\sigma^{\rm LO}(gg \to \Upsilon_{\rm direct} + c\bar{c})]_{\rm LHCb\ cuts\ on\ charm}}{[\sigma^{\rm LO}(gg \to \Upsilon_{\rm direct} + c\bar{c})]_{\rm without\ cuts\ on\ charm}} \approx 0.7$$

DPS:

$$\frac{\sigma_{\rm DPS}^{\Upsilon+c}}{\sigma_{\Upsilon}} = \frac{\sigma_{\rm LHCb}^c}{\sigma_{\rm eff}} \sim 10\%. \label{eq:eff_def}$$

Accounting of c-quarks from PDF at the Υ production scale

x min

$$x \simeq \frac{E_T}{\sqrt{s}} \exp(y)$$

LHCb : 2 < y < 4.5

 $\langle E_T \rangle \sim 2.5 ~{\rm GeV}$

 $Q_{\Upsilon} \sim 10 \text{ GeV}$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

 $\mbox{Problems}$. There is no possibility to estimate uncertainties accurately. The additional hypothesis about c quark k_T is needed.

Associative production of Υ and open charm hadrons at LHCb $\bigsqcup_{\text{Conclusions}}$

Conclusions

 $\sigma(\Upsilon + c) / \sigma(\Upsilon)$:

- ▶ SPS+LO: 0.2% ÷ 2%
- ▶ DPS: ~ 10%
- There is no hope that NLO could remove the gap between SPS and DPS predictions.
- ▶ If SPS: more accurate estimations are needed.
- If DPS: the distributions for Υ and for the open charm should be close to the distributions for single production of Υ and open charm.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

▶ We expect, that data will be describe by DPS.

Thank you for your attention.

◆□ > < 個 > < E > < E > E 9 < 0</p>

Georges Aad et al.

Observation of an Excited B_c^{\pm} Meson State with the ATLAS Detector. *Phys.Rev.Lett.*, 113(21):212004, 2014. doi: 10.1103/PhysRevLett.113.212004.

R. Aaij et al.

Observation of J/ψ pair production in pp collisions at $\sqrt{s}=7TeV.$ Phys.Lett., B707:52–59, 2012a.

doi: 10.1016/j.physlet b.2011.12.015.

R Aaij et al.

Observation of double charm production involving open charm in pp collisions at \sqrt{s} = 7 TeV.

JHEP, 1206:141, 2012b.

doi: 10.1007/JHEP03(2014)108,10.1007/JHEP06(2012)141.

V.M. Abazov et al.

Double parton interactions in photon+3 jet events in p p-bar collisions sqrts=1.96 TeV.

Phys.Rev., D81:052012, 2010.

doi: 10.1103/PhysRevD.81.052012.
F. Abe et al.
Double parton scattering in $ar{p}p$ collisions at $\sqrt{s}=1.8$ TeV.
Phys.Rev., D56:3811-3832, 1997.
doi: 10.1103/PhysRevD.56.3811.
R. Akers et al.
A Measurement of the production of D*+- mesons on the Z0 resonance.
Z.Phys., C67:27-44, 1995a.
doi: 10.1007/BF01564819.
R. Akers et al.
Measurement of the multiplicity of charm quark pairs from gluons in
hadronic Z0 decays.
<i>Phys.Lett.</i> , B353:595-605, 1995b.
doi: 10.1016/0370-2693(95)00633-V.

S.P. Baranov.

Semiperturbative and nonperturbative production of hadrons with two heavy flavors.

Associative production of Υ and open charm hadrons at LHCb $\bigsqcup_{}$ Useful references

Phys.Rev., D56:3046-3056, 1997. doi: 10.1103/PhysRevD.56.3046.