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‘ Infroduction, non-perturbative physics I

Perturbation expansions diverge.

F.J. Dyson, Phys. Rev. v. 85, p. 631 (1952).
L.N. Lipafov, Sov. Phys. JETP v. 45, p. 216 (1977).

Non-perturbaftive confributions are inevitable.

Various approaches:

Analytic, e.g.

D.V. Shirkov, I.L. Solovisov, Phys. Rev. Lett. v. 79,
p. 1209 (1997),

Lattice

Schwinger-Dyson equations

Effective interactions (NJL ...)
Compensation approach



Let us take low-momenta a;(Q) as an
important example (N = 3).

s(Q) = o7 (D

Here we see (Landau) pole at Q> = A?*. What
fo do?

To use a non-perturbative tool.

The analytic approach:

3 . (@
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Figure 1: Behavior of x;( Q) in the analytic approach.
The curve with the pole - perturbation expression.



T T
a nu=B.,8835, L=487 ——
a nu=0,8828, L=48" <
a nu=0,8835, L=327 —%—
a nu=8,8855, L=327 —5— |

oF or or e
munnn
[~y
* o b *

WD D
U@
L I B B ]

Figure 2: Behavior of a;(Q) in the lattice approach.

B. Blossier et al., Nucl. Phys. Proc. Suppl. v. 234
p. 217 (2013)
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Figure 3: Behavior of a;(Q) in the compensation ap-
proach.

B.A.A.,l.V.Zaitsev, Int. J. Mod. Phys. v. A28:
1350127 (2013)
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Figure 4: Behavior of as(Q) from low mass resonances.

M.Baldicchi et al., Phys.Rev.Left. v.99:242001
(2007)

A qualitafive semblance with both the laftice
and the compensation approaches.



‘ Compensation approach I

The method of a spontaneous generation of
effective non-local interactions, which we shall
fry to apply in this talk fo the problem, was just
grown up from N.N. Bogoliubov’s
compensation conception developed and
successfully applied in the superconductivity
theory.

N.N. Bogoliubov, ZhETF, v. 34 pp. 58,66,73
(1958).

N.N. Bogoliubov, Soviet Phys.-Uspekhi, v. 67 p.
236 (1959).

N. N. Bogoliubov, Physica Suppl. (Amsterdam),
V. 26, p. 1 (1960).



The light meson physics - Nambu - lona-Lazinio
interaction

Y. Nombu and G. Jona-Lasinio, Phys. Rev., v.
122 p. 345 (1961); ibid v. 124 p. 246 (1961).

Application of the method leads fo calculation
of main light mesons’ properties with good
precision using only fundamental QCD
parameters.

B. A. Arbuzov, M. K. Volkov and I. V. Zaitsev, Int.
J. Mod.Phys. A, v. 21 p. 5721 (2006).



Application fo the spontaneous generation of
the would-be anomalous three-boson
interaction:

B. A. Arbuzoy, Eur. Phys. J., v. C61 p. 51 (2009).
B. A. Arbuzov and I. V. Zaitsev, Phys. Rev.,
v. D85 : 093001 (2012).

The low energy gluon interaction:
B. A. Arbuzov and I.V. Zaitsey, Int. J. Mod. Phys.,
v. A28 : 1350127 (2013).

The method is described in full in the book

B. A. Arbuzov, Non-perturbative Effective
Interactions in the Standard Model, De Gruyter,
Berlin, 2014.



Compensation equations — non-ftrivial solutions
— phenomenon of a spontaneous generation of
effective interactions.

A trivial solution — absence of anything new.
Important: a non-ftrivial solution exists only
provided a number of condifions on
parameters of a problem under a study being
fulfilled.



A non-frivial solution — a possibility of a
determination of fundamental SM parameters
with the fine structfure constant « taken as an
example in this talk.

B.A. Arbuzov and I.V. Zaitsev: arXiv 1505.07269
(hep-ph)

Few formulas for the would-be ftriple effective
inferaction of the electro-

weak bosons

G
— 5 F €abc W]jll/ Wlljp W;):‘u; (3>

We, = 9, W) — 3, Wi + geapc W W ;

Form-factor F(p;) is uniquely defined by
compensation equations.



Anomalous three-boson interaction (3) was
considered for a long fime on
phenomenological grounds

K. Hagiwara, R. D. Peccei, D. Zeppenfeld and K.
Hikasa, Nucl. Phys., v. B282 p. 253 (1987).

K. Hagiwara, S. Ishihara, R. Szalapski and D.
Zeppenfeld, Phys. Rev., v. D48 p. 2182 (1993).

Conventional definition:

G = f/l/z\;gzo.65. 4
W

The best limitations for A: (PDG)

A, = —0.022 4 0.019;
Az = — 0.09 £ 0.06. (5)




The conditions for existence of the non-trivial
solution —

g(z9) = 0.60366; zo = 9.6175; ©)
IA| =3.5-107°; G = 0.000352 TeV 2.

2 G?* A

05 2 = 20 Ao =7.914-10° GeV. )

In QCD : ¢(z¢) = 3.817, that gives satisfactory
description of the low-momentum behavior of
the running strong coupling, including absence
of the Landau pole.
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Figure 5: The behavior of the form-factor in EW theory.

G2p4
2= oo F(z) = 0 forz > z. &)




‘ Weinberg mixing angle and I
\ the fine structure constant |

Let us consider the following effective
interaction of electroweak gauge bosons

|5%
Lepr =
G2 b b G3
— S WEWEWE Wi, — —2 Wi Wi Boo By —
G4 G5

< Z,Z, W2, W7, — < ZuZyBpoBps. (9

Here index a (1, 2) corresponds fo charged
W-s, and index b (1, 2, 3)corresponds fo W in
the initial formulation of the elecfro-

weak interaction.



E.g. for the first term in (9) the vertex reads

10818, G2 8w (8pr (P 9) — Podp); (10)

where W* have indices u, v and incoming
momenta and indices (p,p) and (g, o) refer to
fields W°.

Remind the well-known relation

W;,) = cos 0w Z,, + sin Oy Ay;
B, = — sinfw Z, + cos 0w A,. (1)

Thus in terms of the physical stafes we have



Gz + — + _ GZ + —_
ZWHW, Wi Wep — W W, X
(cos2 OwZpoZpo + 2c0s Oy sin OwZ,,Ape +

: Gy _ Gy
sin? 0w Apo Apo ) — = ZuZuWyle Wo — =232y X

Lyjr = —

(cos2 OwZocZpor + sin? OwApsAps + 2cos Oy X

. G3 (.
cos? OwApscAps — 2 cos By sin GWZPJAPJ) — (12)
s, 7., (sin? 0wZ, o Z 20w Ay, A
g fnln (Sln WlpoLpo + €0s” OwAps Aper —

2 co0s Oy sin Oy Zpo-ApU-) .



Interactions of type (12) were earlier
infroduced on phenomenological grounds in
works

G. Belanger and F. Boudjema, Phys. Lett., v.
B288 p. 201 (1992).

G. Belanger ef al., Eur. Phys. J., v. C13 p. 283
(2000).

A spontaneous generation of interaction (12)?
We start with Lagrangian, which describes
boson fields W%, Z, + and the Higgs field H in
the unitary gauge with the usual division info
the free and fthe interaction parts

L = Lo + Lin:. (13)



Then we perform the Bogoliubov add-subfract
procedure of expression (12)

L = LO + Lmtl

Lo—LO — Leff’ (]4)

(15)

L ., = Liy eff.

We are fo demand, so that in the theory with
Lagrangian L] (14), all contributions to
four-boson connected verfices (12) are
summed up to zero. The interaction term in (14)

is compensated. Emphasize, that all SM
interactions are includedin L’ , (15).



The experience of application of the method fo
the Nambu - Jona-Lazinio inferaction. The first
approximation for the problem of spontaneous
generation of the NJL interaction assumes
form-factor F(p), to be unit step function

© (A? — p?) and only horizontal diagrams of the
type presented in Fig. 6 are taken info account.
The next approximation includes also vertical
diagrams and form-factor F (p) is uniquely
defined as a solution of a sef of compensation
conditions. We just use the first approximation.
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Figure 6: Diagram representation of set (16). Simple lines
represent W* and WY, dotted lines represent B or Z with
indications in the figure. A black spot means effective
interaction (12).



Let us infroduce effective cuf-off A and use
O (A? — p?) for the form-factor. The set of
compensation equafions corresponds fo
diagrams being presented in FIG. 6

—xp — 2Fyx5 — (1 — a?)Fzxsxg —
azFZx2x4 = 0;

—x3 — 2Fw xo x3 — a’Fy x, X5 —
(1—a®)Fzx3x5 = 0; (16)
—x4 — 2Fyxoxg — a*Fzxi —

(1 — a®)Fzx3x4 = 0;

—x5 — 2Fwx3xg — a2F2x4x5 —

(1— a®)Fzx; = 0;



A2 2
A? + M?
LW — In +2 LA/ ;
My,
2M? 1
F,=1 Z (L _ —); 17
Z o (\Lz—5 (17)
A? + M?
LZ — In +2 Z,
Mz
3G;A?
X; = 16171'2; a = cos Oy. (18)

We have the following solutions of set (16) in
addition to the evident frivial one:
Xp =x3=x4 =x5=20



1+ a?Fzxy
X3=x5=0;x2=— ’ K

2Fv
1
X2=x4=0;x5=—(1_a2)1:z;*
x2=x4=—1+(1_a2)1:zx5‘x3=xs‘*
ZFW—|—012F2 ’ ’
— — ° — az o
xz - x4 - OI x3 - 2(1—612)le
v — 1
T 1—ad)Fy
1
X2 = — -7 X4 = x3 = x5 = 0

(19)

(20)

21)

(22)

(23)



x3 = x5 = 0; x2 —ZFW;x4=0;
1 a®
X2 = X4 — _E; X3 = 2(1—a2)1-"w;
— 1 .
BT T - adE
1 a®
Y2 = o Ey T 0; x3 = 2(1— )Fy’
— 1 .
BT T a-dE’
1
Xy = ; X4 = 0; x5 = 0;

- 2Fy’

(24)

(25)

(26)

(27)



We assume, that the Higgs scalar corresponds
to a bound state consisting of a complete set
of fundamental particles. Here we study the
would-be effective interaction of the
electroweak bosons, so we fake info account
just these bosons as constituents of the Higgs
scalar. Thus corresponding Bethe-Salpeter
equations for the bound sfate are fo be fulfilled.
Two equations: constituents are either W* W4
or Z Z. The equations are graphically
presented in FIG. 7. Calculations are
performed in the unitary gauge.
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Figure 7: Diagram representation of set of the BS equa-
tions. Simple lines - W -s, dofted lines - Z, wave line - v,
thick lines - H. Black spofts - effective interaction (12),
points - SM EW couplings in the unitary gauge.
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T el xg = 0.0337; (30)

21
1+ 32 1n 2,
Z

M%, 13
Bw = Fw + (Lw — —)

2 A2 12
M3, 13

B,—F (L ——)
Z 7 + T AZ\FZ — 15

w(1+ 52 05 )

w(1- i)’
e’(Mz)

— =wa(My) = 0.007756.
“ 4 7T “( Z)

a=cosOw(A); 1—a®=

Here we have used the sfandard one-loop
evolution formulas for the running electfro-weak
coupling «.,, and the elecfromagnetic one «
with Ny = 6. We have also applied relation

MW = COS BW Mz.



Now we look for solutions of sef (16)(four
equations), (28), (29) for variables

X2, X3, X4, X5, 4, A, which give appropriate
value for x (Mz) = 0.007756. We use

MW = 80.4G8V, MZ = 91.2G8V,
My = 125.1GeV. @31

We have studied solutions of the set of
equations. Result: only solutions (19), (20), (21)
of set (16) give «(Mz) = 0.007756. These
options are marked by * in list (19 — 27).



For the first option (19) there are two solufions

A = 5.226 -10° GeV; x, = — 0.3238: (32)

xg — — 0.4865; x3 = x5 = 0; a = 0.8511;
A = 8.687 - 10 GeV; x, = — 0.3160; (33)
xg = — 0.7113; x3 = x5 = 0; a = 0.7192;

Coupling constants respectively (Gs; = Gs = 0)

G, = —6.24-107° TeV ™2

Gy = —9.376 - 10> TeV (34)
G, = —2.2045 .10~ TeV 2

Gy = —4.962-10733 TeV 2, (35)



From definitions in experimental work
S. Chatrchian ef al. (CMS Collaboration), Phys.
Rev., v. D90: 032008 (2014).

ezagv + _
Lerr = SA/2 A AW, W, —
82 ZkW B
i,zo A Zy W W ; (36)
we have:

ﬂ 2G>y kgv ~ Gacos Oy

A? 7 g2’ A2 2g%sin0y’

(37)



Experimental limitations

|4%

2 TeV 2 < % < 20TeV—2

|4%

k
_12TeV 2 < ﬁ < 10 TeV 2

Predictions (39, 40) are deeply inside
boundaries of limitations (38).

Results (34,35):

W
4o
A/Z

W
ko~
A/Z

— —0.000147 TeV —2;

— —0.000142 TeV ~%;

(38)

(39



% — —1.044-10"32 TeV 2,
kg —32 oy —2
A= —1.13 - 10" 2* TeV > (40)

for the two solufions respectively.

The second solution (40) gives a negligible
small value, whereas the first one (39) for a
possibility of its checking needs five orders of
magnitude of an improvement of the precision.



The second and the third solutions (20,21) of
the set of compensation equations gives foo
low values for the effective cut-off

Ay = 364.5845 GeV;
A3z = 106.7934 GeV;

which conftradict experimental limitaftions and
so fhey are fo be rejecfted.

Thus we are rested with two solufions:

(32) and (33) with the following cut-offs.

A = 5.226 - 10°GeV:
A = 8.687 - 10° GeV;



Solution (33) corresponds to the cut-off being
of the order of magnitude of the Planck mass
Mp; = 1.22 x 10" GeV. This possibility in case of
its realization may serve as an explanation of
hierarchy problem

E. Gildener, Phys. Rev., v. D14 p. 1667 (1976).



Value of A (32) is close fo boundary value (7) in
the problem of anomalous friple W
interaction (3)

Ao = 7.91413 - 10° GeV. 41

This value is close to value 5.2262 - 10° GeV in
solution (32).

Now we have two interesting values for possible
cut-off A. Low value (41), which follows from
previous results, and the Planck mass.



Let us consider our sef of equations for these
values of the cut-off. Earlier we have fixed
actual value for electromagnetic constant
«(Mz) and calculated values for cutoff (32,33).
Now we fix A and calculate «(Mz). In this way
for values (41) and the Planck mass we obftain
respectively

w(Mz)41 = 0.00792;
a(Mz)p; = 0.00790. (42)

Both values differ from actfual value

a(Mz) = 0.007756 by 2%.

Thus it might be possible to interpret results (42)
just as a calculation of the value of «.



Of course, there is the trivial solution of set (16):
all x; = 0, which gives no additional
information. We have also non-ftrivial solutions.

The problem of the choice of the genuine
solution is undoubtedly essential. The answer is
to be connected with the problem of a stability
of solutions. The problem needs exfensive
additional studies.

In the falk we undertake to show the way fo
decide if the non-trivial solufion (32,34) really
exists from experiments at the upgraded LHC.



‘ Experimental implications I

Effective interaction (12) directly leads fo
effects in reactions

p+p—WT+ W™ +WE(Z,9). (43)

With values G,, G4 (34,35) no hope for the
necessary precision.

An enhancement of the effect in processes
involving t-quarks. Consider contribution

of (12) with couplings (34) to vertex

GWEt 2, b b . 1.
VI EEW, W, b =13, (44)
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Figure 8: Diagram representation of ttWW vertex. Con-
tinuous lines represent W, doftted line represents Z and
dofty lines at the left of each diagram represent the t-
quarks. Notations for vertices are the same as in FIG. 7

We have fto bear in mind effective form - factor
@ (A? — p?) ininteraction (12).



With account of definitions of x; (18) we obfain

g (A)M;(A)
24 My,

GWEt —

(2 x2 + a*(A) x4) :

where we take g(A) = /4w, With use of (29)
and

M;

(1 I 7“84(711\-/10 In [X}_}])

where M; = 173.2 GeV (PDG).

M:(A) =

.
4

N




For solufions (32) and (33) we have respectively

Gy = 4.25-107% GeV~3; (45)
Gyir = 1.506 - 10~ % GeV 3, (46)

Let us consider processes

p+p — FtWE(Z) + X. With values (45,46) we
have additional confributions of the new
effective inferaction (44) fo cross sections
Aozw, Aoyz Of the processes.

t+W*+X; (47)
t+ 7+ X; (48)

PTP
PTP

2\ 2\
A VI )




The results for Ac are obtained with the use of
the CompHEP package and are presented in
Tables|, 2. The results for SM values are
obfained in a number of works, for example
J. M. Campbell and R. K. Ellis, JHEP

v. 1207 p. 052 (2012);

M. V. Garzelli, A. Kardos, C. G. Papadopulos
and Z. Trocsanyi, JHEP

v. 1211 p. 056 (2012);

J. Alwall et al., JHEP v. 1407 p. 079 (2014).



Table 1: SM results for cross-sections of processesp +p —
itV at /s = 8TeV and predictions for additional contri-
bution due fo effective interaction (44) with solutions (32)
and (33). Values for effective ttWW coupling are shown
in subscripfs.

channel osm fb Acys fb Aoy fb

frwt 16113  103.5420.7 13.0 & 2.6
fHtW— 7170 28.0+56  3.540.7
ttZ 1977152 472494 59412

Recent CMS result at \/s = 8 TeV :

cuw+ (8TeV) = 1701“1(1)8 fb;
01,7 (8TeV) = 200 = 90 £b; (49)




S. Chatrchian ef al. (CMS Collaboration), Eur.
Phys. J. v. C74 p. 3060 (2014). Results for

Vs = 7TeV : S. Chatrchian et al. (CMS
Collaboration), Phys. Rev. Lett, v. 110: 172002
(2013).

Results (49) are compatible with wouldbe
additional contribufions in Table 1 for both
values (45, 46) and with the Standard Model.

However Ao (ttW, Z) increases with the energy
increasing and for the updated LHC
/s = 14 TeV we show predictions in Table 2.



Table 2: SM results for cross-sections of processesp + p —
itV at \/s = 14TeV and predictions for additional contri-
bution due fo effective interaction (44) with solutions (32)
and (33). Values for effective ttWW coupling are shown
in subscripfs.

channel osm fb Aoys rp Aoge rp
Wt 507117 1257 4251 158 4= 32
FtW— 26271 ¢ 3554+ 71 4549
itz 76017, 578 £116 73415

For /s = 13 TeV calculated values for Ac are
fo be divided by ~ 1.38. For the upgraded LHC
the most promising processis p + p — tt W+,




According to Table 2 the fotal additional
confribution fo the production of the charged
W with the fop pair for the first solution (45) is
around 1.6 pb, that exceeds the corresponding
fotal SM value by factor 3 (2.2 for \/s = 13 TeV).

Thus the effect is quite pronounced. On the
other hand such wouldbe significant effect
guaranties the reliable disproof of an existence
of interaction (44) with coupling (45) and thus
the rejection of a realization of solution (32,34)
in case of a disagreement with the prediction.



In case of absence of such significant effect,
connected with low cut-off solution (32) there
remains the possibility of the high cuft-off
solution (33). However, we see from Table 2 that
the effect, could be around 30% aft the
upgraded LHC. For example, additional
contribution Ao for process p + p — ttWT + X
is now 158 4 32 fb with SM value 5071177 fb. So
the reliable sftudy of effects of this solufion
needs more precise calculations of the SM
value and an improvement of the experimental
accuracy.




Note, that we do nof include in the Tables
process p + p — ttv, because the effect here
Is significantly less pronounced. Namely, for
Vs = 13 TeV we have osy; = 1.744 + 0.005 pb,
whereas the effect of interaction (44) with
coupling (45) is calculated fo be Ac = 0.125 pb.
We have looked for other possible observable
effects and have not succeeded in this. For
example, effects in pair Higgs scalar
production accompanied by W or Z are not
significant for solutions (32,33).




\ Conclusion |

To conclude let us draw aftention to the the
results in view of the compensation approach
to the problem of a sponfaneous generation of
an effective inferaction. We would emphasize
that the existence of a non-frivial solution of
compensation conditions always impose
strong restrictions on parameters of the
problem. We see such resftrictions in both
problems of the spontaneous generation of the
Nambu - Jona-Lazinio interaction and the friple
anomalous weak boson interaction being
mentioned above.



Here we have considered consequences of the
existence of nontrivial solufions of
compensation conditions for a sponfaneous
generation of the anomalous four-boson
interaction.

The most interesting result is just relatfion (42).
Indeed, we see, that the adequate value of the
fine sfructure constant is achieved in two
cases. The first case corresponds fo the
electro-weak scale ~ 10> TeV and the second
case corresponds fo the Planck mass scale.
We have two phases and may assume, that
these phases occur in different stages of the
Universe evolution.



Under some conditions there may be a phase
fransition between them. For example, it might
be, that at the very early stage of the evolution
the Planck scale solution (33) is realized. Then
in the course of expanding of the Universe the
phase fransition occurs fo the low cut-off
solution (32) with the elecfro-weak scale. In
the contemporary Universe we would observe
just this solution. This point of view could be
confirmed provided the effects presented in
Tables 1,2 would be discovered. Thus it would
be possible fo understand such fremendous
gap between the electro-weak scale and the

gravity scale.



In case of a confirmation of resulfs under the
discussion, the following consequences might
become clear.

1. The first non-perturbative effect in the
elecfro-weak interaction would be esftablished.
2. The efficiency of the compensation
approach to description of the phenomenon of
spontaneous generation of an effective
interaction would be ascertained.



3. The restrictive nature of compensation
conditions would be confirmed.

4. The last but nof the least result consists in the
successful calculation of the fine sfructure
constant « (42), that already could be
considered as a sound argument on behalf of
the compensation approach.



The talk mostly corresponds to work:
B.A. Arbuzov and I.V. Zaitsev: arXiv 1505.07269

(hep-ph)

Thanks for the
attenfion



We have studied a dependence of two
interesting solutions on value of the Higgs
scalar mass My. The high cut-off solution
depends on My quite weakly and A remains fo
be close fo the Planck mass for the wide
interval, for example

100 GeV < Mg < 100TeV.

The low cuft-off the solution exists only for Mg
being limited from above by value ~ 6.8 TeV.
At the boundary A = 4.008 - 10° GeV.



