
6/27/2015 P. Volkov SINP MSU 1

Status of mTCA Slow Control development at CMS Status of mTCA Slow Control development at CMS

Petr Volkov

 Lomonosov Moscow State University Skobeltsyn Institute of Nuclear Physics, Russia

6/27/2015 P. Volkov SINP MSU 2

uTCA: Introduction uTCA: Introduction

MicroTCA® - open standard for fabric computer systems.
MicroTCA systems are both physically small and non-expensive.
Nevertheless their internal architectures are large.

MicroTCA design goals:
• Favorable cost, size, and modularity
• Target low start-up costs
• Scalable Backplane bandwidth
• Modular and serviceable
• Standardized Shelf management implementation
• 300 mm nominal equipment depth
• 19 in. nominal equipment width
• Cooling: 20–80 W/Card
• Extended temperatures (–40 to +65 degrees)
• Power: 12 V
• Life span: at least eight years

http://picmg.org/wp-content/uploads/microtca1-348x2321.png

6/27/2015 P. Volkov SINP MSU 3

Major upgrades of the LHC experiments at CERN are foreseen over > 10 years
• aligned with LHC upgrade long shutdowns: 2013/14, 2018, 2023

Off-detector electronics of the LHC experiments mostly based on VME

• “old” technology and doubts about long-term availability

Experiments planning to use MicroTCA & ATCA for upgrades of their back-end electronics

• MicroTCA: CMS
• ATCA: LHCb & ATLAS

xTCA advantages

• choice of form factors
• backplane bandwidth and protocols
• cooling and power supply
• redundancy (PSU, cooling)
• infrastructure monitoring features

MicroTCA and ATCA developments already on-going at CERN and collaborating institutes
Accelerator sector is also investigating MicroTCA

uTCA: CERN uTCA: CERN

6/27/2015 P. Volkov SINP MSU 4

 CMS is upgrading back end electronics. Why?

 Performance

• be ready for 4 times more data

• be ready for much higher luminosity / occupancy

• be ready for filter / trigger processes needing much more data

• current system not able to cope with this

 Maintainability

 avoid legacy support for 15 years or more

• current design based on pre 2000 technology

 reduce complexity

• reduce number of cables for crate internal data transfer

• reduce number of different boards

• get rid of many mezzanine cards

uTCA: CMS uTCA: CMS

6/27/2015 P. Volkov SINP MSU 5

uTCA: Reduce complexity – from VME to mTCA uTCA: Reduce complexity – from VME to mTCA

mTCA slow control tasks:
• to bring into any desired operational state
• to signal any abnormal behavior to the operator
• and to allow manual or automatic actions to be taken
• to monitor and archive the operational parameters such as
voltages, currents, temperatures

mTCA slow control tasks:
• to bring into any desired operational state
• to signal any abnormal behavior to the operator
• and to allow manual or automatic actions to be taken
• to monitor and archive the operational parameters such as
voltages, currents, temperatures

6/27/2015 P. Volkov SINP MSU 6

CMS: Moving to mTCA CMS: Moving to mTCA

Moving VME to microTCA

CMS TDR for the phase 1 upgrade of the HCAL CMS TDR for the phase 1 upgrade of the HCAL

6/27/2015 P. Volkov SINP MSU 7

CMS: Detector Control System CMS: Detector Control System

CMS Detector Control System (DCS) handles
• configuration
• monitoring
• operation
of all experimental equipment
and provides an interface between the user
and the physics setup

The CMS DCS mandatory rules:
1. Use PVSSII and the JCOP Framework to develop your control
applications. These are the official CMS DCS developing tools.
2. Follow the CMS DCS naming conventions.
3. Create the FSM detector trees following the CMS FSM
conventions.
4. Create Detector Framework components out of your control
applications.
5. Install only one PVSSII project in each production system.
6. Use CMS central software repository for your Detector and JCOP
framework components.
7. Integrate access control in your DCS applications.
8. Follow CMS DCS alarm handling policies.

6/27/2015 P. Volkov SINP MSU 8

uTCA Slow Control: Software architecture uTCA Slow Control: Software architecture

Interface? Interface?

PVSS (WinCC OA)
control, monitoring, visualization

PVSS (WinCC OA)
control, monitoring, visualization

Condition database Condition database

Configuration database Configuration database

Wisconsin system manager Wisconsin system manager

Control and monitoring:
WinCC OA project - Win7 (64 bit)

Low level interface:
Wisconsin System Manager – Linux

Databases:
Condition DB - Oracle
Configuration DB - Oracle

Questions were to decide:

How to connect WSM to WinCC OA?

How to describe in WinCC a variable
hot-swap mTCA configuration?

6/27/2015 P. Volkov SINP MSU 9

uTCA SlowControl: Interface – 3 possible solutions uTCA SlowControl: Interface – 3 possible solutions

mTCA hardware mTCA hardware

Wisconsin System
Manager

Wisconsin System
Manager

DIM server DIM server

mTCA hardware mTCA hardware

Wisconsin System
Manager

Wisconsin System
Manager

Custom WinCC client
manager

(Built on native WinCC
API)

Custom WinCC client
manager

(Built on native WinCC
API)

PVSS (WinCC OA)
control, monitoring
PVSS (WinCC OA)

control, monitoring

mTCA hardware mTCA hardware

Wisconsin System
Manager

Wisconsin System
Manager

Custom PSX server Custom PSX server

PSX WinCC client PSX WinCC client

PVSS (WinCC OA)
control, monitoring
PVSS (WinCC OA)

control, monitoring

WinCC DIM client WinCC DIM client

PVSS (WinCC OA)
control, monitoring
PVSS (WinCC OA)

control, monitoring

DIM server Native PVSS API Custom PSX server

6/27/2015 P. Volkov SINP MSU 10

uTCA SlowControl: 3 possible solutions - comparison uTCA SlowControl: 3 possible solutions - comparison

Interface Pro Contra

DIM Server Well known in CERN and CMS

Good performance

Already tested with mTCA and WSM

Good integrated development environment – Visual
Studio 2010

Supported by Linux and Windows

Additional level in the line of
data transfer

Complexity in configuring

Very hard coded data structure

Non-industrial, home made in
CERN

Custom PVSS
client on
native PVSS
API

Siemens (ETM) industrial standard

Best performance

Already tested with mTCA and WSM

Direct connection to PVSS datapoints

Very simple set of functions (dpSet, dpGet, dpConnect)

Good IDE – Visual Studio 2010

Supported by Linux and Windows

Custom PVSS client however
built on the industrial standard

Custom
server on PSX
software

Well known in CMS

Good performance

Uses the same simple set of functions as native PVSS API

Direct (via PSX client) connection to PVSS datapoints

Non-industrial, home made in
CMS, supported only by Linux

Additional level of data transfer

Additional obligatory Linux node

Requires xDAQ to be installed

6/27/2015 P. Volkov SINP MSU 11

uTCA SlowControl: Data transferring uTCA SlowControl: Data transferring

6/27/2015 P. Volkov SINP MSU 12

uTCA Slow Control: Crate data structures uTCA Slow Control: Crate data structures

typedef struct
{
bool enabled;
bool on;
bool hotswap;
bool empty;
float tempFet;
float tempIn;
float tempOut;
float tempBrick1;
float tempBrick2;
float tempBrick3;
float tempBrick4;
float currentOut1;
float currentOut2;
float voltage12;
float voltageOut1;
float voltageOut2;
} PM_DATA;

typedef struct
{
bool enabled;
bool on;
bool hotswap;
bool empty;
float temp1;
float temp2;
float temp3;
float temp4;
float current;
float current1;
bool telcoAlarm;
bool powerSwitch;
bool ipmbLink;
bool empty1;
} CU_DATA;

typedef struct
{
bool enabled;
bool on;
bool hotswap;
bool empty;
float current;
float current1;
float voltage12;
float tempT2;
float voltage3_3;
float voltage1_2;
bool alarmLevel;
bool powerGood;
bool fpgaConfig;
bool empty1;
} AMC13_DATA;

typedef struct
{
char name[15];
bool enabled;
bool on;
bool hotswap;
bool empty;
float sensor1;
float sensor2;
float sensor3;
float sensor4;
float sensor5;
float sensor6;
} AMC_DATA;

typedef struct
{
bool enabled;
bool on;
bool hotswap;
bool empty;
float current;
float current1;

} MCH_DATA;

typedef struct
{
int number;
MCH_DATA mch;
CU_DATA cu1;
CU_DATA cu2;
PM_DATA pm1;
PM_DATA pm2;
AMC13_DATA amc13;
AMC_DATA amcs[12];
} CRATE_DATA;

Depends on
AMC type

Information from one crate is joined in one memory block
which is transferred to WinCC OA via a subscribed DIM service

6/27/2015 P. Volkov SINP MSU 13

uTCA Slow Control: Logical view uTCA Slow Control: Logical view

CMS_MTCA

CMS_MTCA_HCALTR

CMS_MTCA_HCALTR_CRATE1

Modules, units, sensors …

…ngFEC … TCDS … OTHERS (?)

CRATES…

6/27/2015 P. Volkov SINP MSU 14

uTCA: Introduction uTCA: Introduction

FSM tree consists of three basic branches: ngFEC, HCALTR, TCDS
Basic branches are divided on crate branches with numbering
corresponding to the HWTree
Crate branches are also subdivided on a common crate device unit
and individual AMC device unit nodes
Naming convention is kept according to the CMS DCS guideline

Hardware tree consists of
15 “crate” datapoints
with common crate information
(PM, CU, MCH, AMC13)
 + 12 individual AMC datapoints
per crate

6/27/2015 P. Volkov SINP MSU 15

uTCA Slow Control: Examples of visualization panels uTCA Slow Control: Examples of visualization panels

Dim server log

DEN: FSM view

Top mTCA FSM panel 2nd FSM level panel

Crate level panel

AMC’s information

Power modules

Cooling units AMC states

6/27/2015 P. Volkov SINP MSU 16

uTCA Slow Control: Current status uTCA Slow Control: Current status

First production version of mTCA DCS is installed on the CMS DCS
production system

 Current configuration:
 FSM tree: HCALTR branch (up to 3 crates)
 ngFEC branch (up to 2 crates)
 TCDS branch (up to 10 crates)
 HCALTR branch (3 crates) already connected to mTCA

hardware via System manager on hcalutca01.cms
 Condition DB is connected, data archiving is implemented
 The history of every sensor is recorded in Cond DB
 Dim server – under Linux & Win - is located in regular position
 Transfer rate of sensors information ~ 10 sec/crate
 Beta-version is ready and works - feedback is welcome

6/27/2015 P. Volkov SINP MSU 17

uTCA Slow Control: Moving forward… uTCA Slow Control: Moving forward…

In order to move the system in full production operation
for 2015 – 2016 runs one need:

 To define a final configuration of branches, crates and AMCs
 To connect to TCDS, ngFEC and, maybe, other subsystems
 To realize links from subdetectors FSM panels to mTCA FSM tree for

those who need mTCA visual information
 To bring the control of the system to the Central DCS shifter
 To implement alert signals and messages for three levels of

severities:
• Warning
• Error
• Fatal

Next step will be to prepare the system for highly increased number of
mTCA equipments (up to 50 crates) in future LHC Runs

