# Microscopic description of E1 resonance in light nuclei

#### Goncharova N.G, Tretyakova T. Yu, Fedorov N.A. SINP MSU

JUNE 27, 2015

- Introduction
- Ø Silicon isotopes
- **3** Model of particle-core coupling (PCC)
- 4 Resonance excitation schemes
- **5** Form factors of *E*1 resonance
- 6 Results



#### Silicon isotopes



#### Properties of silicon isotopes



#### Properties of silicon isotopes



Within the PCC version, the wave functions for the ground and excited states of the nucleus being considered can be represented as the following expansions:

$$|J_f T_f\rangle = \sum \alpha_f^{J'T'j_f} | (J'E'T')_{(A-1)} \times (n_f l_f j_f) : J_f T_f\rangle$$
$$|J_i T_i\rangle = \sum C_i^{J'T'j_i} | (J'E'T')_{(A-1)} \times (n_i l_i j_i) : J_i T_i\rangle$$

where  $|(J'E'T')_{(A-1)}\rangle$  is core wave function, and  $|(n_f l_f j_f)\rangle$ -particle wave function.

## Model of particle-core coupling (PCC)

$$|J_f T_f\rangle = \sum \alpha_f^{J'T'j_f} | (J'E'T')_{(A-1)} \times (n_f l_f j_f) : J_f T_f\rangle, \qquad (1)$$

$$|J_iT_i\rangle = \sum C_i^{J'T'j_i} | (J'E'T')_{(A-1)} \times (n_i l_i j_i) : J_iT_i\rangle, \qquad (2)$$

- The coefficients  $\alpha_f^{j'T'j_f}$  arise upon the diagonalization of the Hamiltonian in the basis of the configurations
- Coefficients  $C_i^{J'T'j_i}$  were estimated with the aid of experimental data on the spectroscopy of direct nucleon-pickup reactions:  $C_i^{J'T'j_i} \approx \sqrt{\frac{S_i}{\sum S_k}}$ , where  $S_i$  is the spectroscopic factor of the reaction that leads to the excitation of the (J'E'T') level of the final-state nucleus (A - 1)
- $\sum S_k$  is the sum of spectroscopic factors of the states with (J', T')
- Photonuclear cross-section in E1 resonance area can be estimated by form factor calculation in photopoint  $q = E_{exc}$ .

$$F_{EJ}^{2} = \frac{1}{2J_{i}+1} |\langle J_{f} T_{f} || \hat{T}_{1}^{el}(q=\omega) || J_{i} T_{i} \rangle|^{2}.$$
(3)

# E1 resonance excitation in <sup>28</sup>Si



# E1 resonance excitation in <sup>30</sup>Si



#### • Basis parameters

| Nucleus, $ \vec{T} $ | <sup>28</sup> Si      | $^{30}$ Si $T = 1$     | <sup>30</sup> Si <i>T</i> = 2 |
|----------------------|-----------------------|------------------------|-------------------------------|
| Basis dimension      | 25                    | 38                     | 13                            |
| Reaction             | <sup>28</sup> Si(p,d) | <sup>30</sup> Si(p,d)  | <sup>30</sup> Si(p,d)         |
|                      | $T_p = 34 \text{MeV}$ | $T_{\rm p}=27{ m MeV}$ | $T_{p} = 27 \text{MeV}$       |

• Spectroscopy for <sup>28</sup>Si: R. L. Kozub Phys. Rev. 172 (1968) 1078–1094

• for <sup>30</sup>Si: 17. R.C. Haight et al Nucl. Phys. A241 (1975) 275

# Form factors of E1 in <sup>28</sup>Si



# Results for <sup>28</sup>Si



Experiment: R.E. Pywell *et al.* Phys.Rev.C 27 (1983) p960, reaction  $^{28}{\rm Si}(\gamma,{\rm n})^{27}{\rm Si}$ 

# Form factors of E1 in <sup>30</sup>Si



# Results for <sup>30</sup>Si



Experiment: R.E. Pywell *et al.* Phys.Rev.C 27 (1983) p960, reaction  ${}^{30}Si(\gamma,n)^{29}Si$ 

### Thank you for your attention!

| Α  | $J^P$   | E <sub>bin</sub> /A MeV | Abundance                             | Decay Modes    |
|----|---------|-------------------------|---------------------------------------|----------------|
|    |         | ~                       | or T1/2                               |                |
| 26 | 0+      | $7924.707\pm0.004$      | 2.229 s                               | arepsilon 100% |
| 27 | 5/2+    | $8124.337\pm0.005$      | 4.15 s                                | arepsilon 100% |
| 28 | 0+      | $8447.744\pm0.000$      | 92.223 $\pm$ 0.019 %                  |                |
| 29 | $1/2^+$ | $8448.635\pm0.001$      | 4.685 $\pm$ 0.008 %                   |                |
| 30 | 0+      | $8520.654\pm0.001$      | $\textbf{3.092} \pm \textbf{0.011\%}$ |                |
| 31 | 3/2+    | $8458.291 \pm 0.001$    | 157.3 m                               | $eta^-$ 100%   |
| 32 | 0+      | $8481.468\pm0.009$      | 153 y                                 | $eta^-$ 100%   |
| 33 | 3/2+    | $8361.059\pm0.021$      | 6.1 s                                 | $eta^-$ 100%   |

#### Properties of silicon isotopes



Separation energies for one  $(B_n)$ , two  $(B_{2n})$  neutrons and one proton  $(B_p)$ . Data from AME2012

Deformation



The deformation parameter calculations in HF for silicon isotopes. The solid line–resuls from J.-P. Delaroche et al, Phys. Rev. C 81 (2010) 014303, dashed line–S.Goriley, At. Data and Nucl. Data Tables 77

| Α  | β <sub>2</sub> (B(E2)↑) | $\beta_2(Q_{mom})$       | $\beta_2$ -calc | Charge radius       |
|----|-------------------------|--------------------------|-----------------|---------------------|
| 26 | $0.444\pm0.022$         |                          |                 |                     |
| 27 |                         | $0.097 \pm 0.006$ (g.s.) |                 |                     |
| 28 | $0.407\pm0.007$         | -0.352 $\pm$ 0.076 (2+)  | -0.366          | $3.1224 \pm 0.0024$ |
| 29 |                         |                          |                 | $3.1176 \pm 0.0052$ |
| 30 | $0.316\pm0.007$         | $+0.094 \pm 0.118$ (2+)  | 0.179           | $3.1336 \pm 0.004$  |
| 32 | $0.345\pm0.031$         | $+0.293 \pm 0.05$ (2+)   | -0.23           |                     |
| 34 | $0.179\pm0.036$         |                          |                 |                     |
| 36 | $0.259\pm0.042$         |                          |                 |                     |
| 38 | $0.249\pm0.048$         |                          |                 |                     |

Data from CDFE: http://cdfe.sinp.msu.ru

#### Decay width calculation

We can estimate the  $\Gamma_{i \rightarrow j}$  by formula (4)

$$\Gamma_{ij} = 2C_w \alpha_{ij}^2 k_{ij} P(l_j) T_{ij}$$
(4)

where  $C_w$  is the Wigner's width,  $\alpha$ -coefficient from (1),

$$k_{ij} = \frac{\sqrt{2m_{\text{particle}}(E_i - E_f - E_{\text{sep}})}}{\hbar c}, \ T_{ij} = \langle T_f T_{3f} \ T_{\text{particle}} T_3 \ \text{particle} | T_i T_{3i} \rangle^2,$$
(5)

 $P(I_j)$ -penetrability of angular momentum barrier.

$$C_{w} = \frac{3(\hbar c)^{2}}{2r_{channel}^{2}m_{particle}c^{2}} \left[\frac{MeV^{2}*fm^{2}}{fm^{2}*MeV} = MeV\right]$$
(6)  
$$f_{i}\left(1 + \frac{2arctg(\frac{2E_{i}}{\Gamma_{i}})}{\pi}\right) = \frac{8\pi^{2}\alpha F_{i}^{2}}{E_{i}}$$
(7)  
$$\sigma_{ij} = \frac{1}{\pi}\frac{f_{i}\Gamma_{ij}}{(E - E_{i})^{2} + (\frac{\Gamma_{i}}{2})^{2}}$$
(8)

Spectroscopy of <sup>28</sup>Si



# Spectroscopy of <sup>30</sup>Si

