Recent ATLAS results and preparations for Run2

Gabriella Pásztor (Carleton University) for the ATLAS collaboration

QFTHEP 2015, Samara, Russia

Introduction

- LHC delivering data at record 13 TeV energies to ATLAS
 - Detector recommissioning and performance evaluation ongoing
 - First glimps at physics at E_{cm} = 13 TeV
- ATLAS submitted so far 437 papers for publication on Run1 E_{cm} = 7 – 8 TeV data
 - 58 in 2015
- Only a **subjective selection** of recent results presented today
 - Not covered: soft QCD, B physics and heavy ion physics
- Topical ATLAS physics talks in this conference
 - Huang Yanping: Higgs boson results (June 25)
 - Mateusz Dyndal: SM measurements (June 26)
 - Lorenzo Massa: Top physics results (June 26)
 - Rebecca Falla: Exotic searches (June 29)
 - Ewan Hill: SUSY searches (June 29)
 - Lukas Plazak: The ATLAS hadronic calorimeter at the LHC and the phase II upgrade program (June 29)
- For full list of results, see https://twiki.cern.ch/twiki/bin/view/AtlasPublic/WebHome

ATLAS data so far...

The ATLAS detector in Run1

Detector upgrades for Run2 (Phase-0)

Detector consolidations

- New (4th) pixel layer close to the beam pipe: insertable B-layer
- New beampipe to reduce background noise by 10-20% in the MS (in forward region stainless steel → aluminium)
- Complete muon coverage
- New Diamond Beam Monitor to measure luminosity and background at $\eta = 3.2 3.5$
- Upgrade Beam Conditions Monitors
- New LUCID (Luminosity measuring Cherenkov Integrating Detectors)
- Repairs (TRT, LAr, Tile,...)

Trigger and DAQ system

- New Level-1 Topological Trigger Processor
- New Central Trigger Processor
- New hardware Fast TracKer operating at 100 kHz providing tracks in 100 ms to HLT
- Merged L2 and EF computer farms
- Additional Sub-Farm Output to allow higher HLT output rate (HLT rate limited to 1.1 – 1.5 kHz by storage capacity)

Software

- Improved reconstruction SW
- New data format and analysis framework

Insertable B-layer (IBL)

- Robustness against irreparable failures & high occupancy at high luminosities, improved tracking precision
- 4th pixel detector layer at r = 3.3 cm •
- Faster read-out chips
- Two different silicon sensor technologies (planar, 3D)
- Pixel size: 50x250 um

IBL hits on track

The insertion gap between the Inner Supporting Tube and IBL: 0.2 mm

500- ATLAS Preliminary

May 2015 commissioning

New lightweight carbon foam structures • invented to support the modules

5 m

Candidates

Conversion

400

300

200

100

0

20 40 60

New CO2-based cooling system

ATLAS Preliminary

May 2015 comm.

s = 13 TeV

🔲 Data

2

Number of IBL hits

3

0

×10³

of tracks 008 000

Number

600

500

400

300

200

100

0

Photon

vertices

Trigger in Run2

		-		-
Stage	Functionalities	Components	Latency	Rate reduction
Level-1 (L1)	Fast custom-made electronics finds regions of interests using Calorimeter/ Muon data with coarse information	L1Calo, L1Muon, L1Topo, Central Trigger Processor	< 2.5 µs	40 MHz → 100 kHz
High-Level Trigger (HLT)	Fast algorithms in RoI, or offline-like ones with full-event info on PC farm	(FTK,) HLT farm	~ 0.2 s (average)	→ 1 kHz (average)

Run2 detector performance: 1st days

Gabriella.Pasztor@cern.ch : Recent results from ATLAS

The SM is doing very well...

Standard		oss Section Mea		Status: March 20	15 J <i>L</i> dt [fb ⁻¹]	Reference
pp total	ATLAS Droliminary		0	0	8×10 ⁻⁸	Nucl. Phys. B, 486-548 (2014
Jets R=0.4	AILAS FIEIIIIIIIary	0.1 < <i>p</i> _T <	2 TeV 🖸	o	4.5	arXiv:1410.8857 [hep-ex]
Dijets R=0.4	Run 1 $\sqrt{s} = 7, 8 \text{ TeV}$	0.3 < m _{jj} < 5 TeV 📀		0	4.5	JHEP 05, 059 (2014)
W		ģ		0	0.035	PRD 85, 072004 (2012)
Z		\$		0	0.035	PRD 85, 072004 (2012)
tī		0		D	4.6	Eur. Phys. J. C 74: 3109 (20
+ .	(0			4.6	PRD 90, 112006 (2014)
total		Δ			20.3	ATLAS-CONF-2014-007
WW	Ø			0	4.6	PRD 87, 112001 (2013)
total		Δ			20.3	ATLAS-CONF-2014-033
γγ fiducial	0			0	4.9	JHEP 01, 086 (2013)
Wt	0				2.0	PLB 716, 142-159 (2012)
total	Δ				20.3	ATLAS-CONF-2013-100
WZ	o,			0	4.6	EPJC 72, 2173 (2012)
total	A			4	13.0	ATLAS-CONF-2013-021
ZZ	0	I HC pp $\sqrt{2}$	5 = 7 TeV		4.6	ATLAS-CONE-2013-020
Wγ	• [—]		hoory		4.6	PRD 87, 112003 (2013)
WW+WZ	b		bserved		4.6	JHEP 01, 049 (2015)
Ζγ	6	Si	at at+syst	0	4.6	PRD 87, 112003 (2013)
ttW					20.3	ATLAS-CONF-2014-038
total			5 = 8 TeV		4.7	
ttZ	95% CE upper innit				4.7	ATLAS-CONF-2012-126
tīγ	0	Т	heory		4.6	arXiv:1502.00586 [hep-ex]
fiducial		C	bserved		4.0	
fiducial	<u>^</u>	Si	at at+syst		20.3	JHEP 04, 031 (2014)
$\Pi \rightarrow \gamma \gamma$ fiducial	P				20.3	Preliminary
VV γγ fiducial, njet=0					20.3	arXiv:1503.03243 [hep-ex]
W [±] W [±] jj EWK	Δ				20.3	PRL 113, 141803 (2014)
t _{s-chan}	·	% CL upper limit			0.7 20.3	ATLAS-CONF-2011-118 arXiv:1410.0647 [hep-ex]
10	$^{-3}$ 10 ⁻² 10 ⁻¹ 1 10 ¹ 1	$10^2 10^3 10^4 10^4$	$10^{5} 10^{6} 10^{11}$	0.5 1 1.5 2		
			σ [pb] $$ c	bserved/th	eory	
· 11 orda	ors of magnitude in a	croce contion.	data and +	hoory	α vor	
14 UIUE	is of magnitude in t	1033-38CU0II.	uala anu l	neory agree	e very	y well

The SM is doing very well...

Combined Higgs mass measurement

- Using $\gamma\gamma \& ZZ \rightarrow 4I$ channels
- Others less sensitive but consistent
- Signal strength floats in fit
- First combined ATLAS + CMS Higgs result with many more expected to come....
- Overall consistency good
- Stat uncertainty dominates: improvement in Run2

Gabriella.

Fiducial and differential cross-sections

- Model-independent measurement of production and decay kinematics
- Allows comparison with precision calculations, alternative models
- Test theoretical modelling of different Higgs boson production mechanisms
- Sensitive to BSM physics
- Reasonable agreement within large (statistically-dominated) uncertainties with SM

Carleton UNIVERSITY

Spin-parity measurements

- From decay kinematics
- $H \rightarrow ZZ \rightarrow 4I$ fully reconstructed
- Limited statistics: test models wrt SM
- $H \rightarrow \gamma \gamma$, WW can also be used
- Best fit SM 0⁺
- Large number of hypotheses assuming gg and qq production tested and excluded at >95% CL (including 0⁻)

arXiv:1506.05669

Tested Hypothesis	$p_{\exp,\mu=1}^{\text{alt}}$	$p_{\exp,\mu=\hat{\mu}}^{\text{alt}}$	$p_{\rm obs}^{\rm SM}$	$p_{ m obs}^{ m alt}$	Obs. CL_s (%)
0_h^+	$2.5 \cdot 10^{-2}$	$4.7 \cdot 10^{-3}$	0.85	$7.1 \cdot 10^{-5}$	$4.7 \cdot 10^{-2}$
0-	$1.8 \cdot 10^{-3}$	$1.3 \cdot 10^{-4}$	0.88	$< 3.1 \cdot 10^{-5}$	$< 2.6 \cdot 10^{-2}$
$2^+(\kappa_q = \kappa_q)$	$4.3 \cdot 10^{-3}$	$2.9\cdot10^{-4}$	0.61	$4.3 \cdot 10^{-5}$	$1.1 \cdot 10^{-2}$
$2^+(\kappa_q = 0; p_{\rm T} < 300 GeV)$	$< 3.1 \cdot 10^{-5}$	$< 3.1 \cdot 10^{-5}$	0.52	$< 3.1 \cdot 10^{-5}$	$< 6.5 \cdot 10^{-3}$
$2^+(\kappa_q = 0; \ p_{\rm T} < 125 GeV)$	$3.4\cdot10^{-3}$	$3.9\cdot10^{-4}$	0.71	$4.3 \cdot 10^{-5}$	$1.5 \cdot 10^{-2}$
$2^+(\kappa_q = 2\kappa_g; p_{\rm T} < 300 GeV)$	$< 3.1 \cdot 10^{-5}$	$< 3.1 \cdot 10^{-5}$	0.28	$< 3.1 \cdot 10^{-5}$	$< 4.3 \cdot 10^{-3}$
$2^+(\kappa_q = 2\kappa_g; \ p_{\rm T} < 125 GeV)$	$7.8\cdot10^{-3}$	$1.2\cdot 10^{-3}$	0.80	$7.3\cdot10^{-5}$	$3.7\cdot10^{-2}$

Spin-parity measurements

Constrain the parameters of the effective Lagrangian assumed to be valid up to a scale Λ (!= 1 TeV below), with SM coupling $g_{HVV} \propto m_{Z/W}^2$.

8.2σ at HL-LHC Δμ/μ ~ 0.2

Run2: improved s/b due to E_{cm} increase + higher statistics!

Searches for non-standard Higgs

30 June 2015

W/Z physics

Vector Boson + X Cro	ss Section Measurement	Status: March 2015	∫£ dt [fb ⁻¹]	Reference
$\sigma^{\text{fid}}(\gamma+X) \left[\eta^{\gamma} < 1.37 \right]$	$\sigma = 236.0 \pm 2.0 + 13.0 - 9.0 \text{ pb} \text{ (data)}$ JETPHOX (theory)		4.6	PRD 89, 052004 (2014)
$-[1.52 < \eta^{\gamma} < 2.37]$	σ = 123.0 ± 1.0 + 9.0 - 7.0 pb (data) JETPHOX (theory)		4.6	PRD 89, 052004 (2014)
$\sigma^{\rm fid}({\sf Z} ightarrow{ m ee},\mu\mu)$	$\sigma = 479.0 \pm 3.0 \pm 17.0 \text{ pb (data)} \\ \text{FEWZ+HERAPDF1.5 NNLO (theory)} $		0.035	PRD 85, 072004 (2012)
$-[n_{jet} \ge 1]$	$\sigma = 68.84 \pm 0.13 \pm 5.15 \text{ pb} \text{ (data)}$ Blackhat (theory)	ATLAS Preliminary	4.6	JHEP 07, 032 (2013)
$-[n_{jet} \ge 2]$	$\sigma = 15.05 \pm 0.06 \pm 1.51 \text{ pb (data)}$ Blackhat (theory)	$P_{\rm up} = 1 + \sqrt{2} - 7 + 8 \text{ To} / \sqrt{2}$	4.6	JHEP 07, 032 (2013)
$-[n_{jet} \ge 3]$	$\sigma = 3.09 \pm 0.03 \pm 0.4 \text{ pb} \text{ (data)}$ Blackhat (theory)	$\neg \psi s = 7, \sigma = v$	4.6	JHEP 07, 032 (2013)
$-[n_{jet} \ge 4]$	$\sigma = 0.65 \pm 0.01 \pm 0.11 \text{ pb} (\text{data})$		4.6	JHEP 07, 032 (2013)
$-[n_{b-jet} \ge 1]$	σ = 4820.0 ± 60.0 + 360.0 - 380.0 fb (data) MCFM (theory)		4.6	JHEP 10, 141, (2014)
$-[n_{b-jet} \ge 2]$	σ = 520.0 ± 20.0 + 74.0 - 72.0 fb (data) MCFM (theory)	• LHC pp $\sqrt{s} = 7$ TeV	4.6	JHEP 10, 141, (2014)
$-\sigma^{fid}(Zjj$ еwк)	$\sigma = 54.7 \pm 4.6 + 9.9 - 10.5$ fb (data) PowhegBox (theory)	Theory	20.3	JHEP 04, 031 (2014)
$\sigma^{\rm fid}({\sf Z} \to \tau\tau)$	σ = 1690.0 ± 35.0 + 95.0 - 121.0 fb (data) MC@NLO + HERAPDFNLO (theory)	Observed stat	4.6	arXiv:1407.0573 [hep-ex]
$\sigma^{fid}(Z \to bb)$	$\sigma = 2.02 \pm 0.26 \text{ pb} \text{ (data)}$ Powheg (theory)	stat+syst	19.5	PLB 738, 25-43, (2014)
$\sigma^{\rm fid}({\sf W} ightarrow { m e} u, \mu u)$	$\sigma = 5.127 \pm 0.011 \pm 0.187 \text{ nb (data)} \\ \text{FEWZ+HERAPDF1.5 NNLO (theory)} $		0.035	PRD 85, 072004 (2012)
$-[\mathbf{n}_{jet} \ge 1]$	$\sigma = 493.8 \pm 0.5 \pm 45.1 \text{ pb} (\text{data})$ Blackhat (theory)	LHC pp $\sqrt{s} = 8$ lev	4.6	arXiv:1409.8639 [hep-ex]
$-[n_{jet} \ge 2]$	$\sigma = 111.7 \pm 0.2 \pm 12.2 \text{ pb (data)}$ Blackhat (theory)	Theory	4.6	arXiv:1409.8639 [hep-ex]
$-[n_{jet} \ge 3]$	$\sigma = 21.82 \pm 0.1 \pm 3.23 \text{ pb (data)}$ Blackhat (theory)	Observed stat	4.6	arXiv:1409.8639 [hep-ex]
$-[n_{jet} \ge 4]$	$\sigma = 4.241 \pm 0.056 \pm 0.885 \text{ pb} (\text{data})$	stat+syst	4.6	arXiv:1409.8639 [hep-ex]
$-[n_{jet} \ge 5]$	$\sigma = 0.877 \pm 0.032 \pm 0.301 \text{ pb} \text{ (data)}$		4.6	arXiv:1409.8639 [hep-ex]
$-[n_{jet}=1, n_{b-jet}=1]$	$\sigma = 5.0 \pm 0.5 \pm 1.2 \text{ pb (data)} \\ \text{MCFM+D.P.I. (theory)}$		4.6	JHEP 06, 084 (2013)
$-[n_{jet}=2, n_{b-jet}=1]$	$\sigma = 2.2 \pm 0.2 \pm 0.5 \text{ pb (data)} \\ \text{MCFM+D.P.I. (theory)} $		4.6	JHEP 06, 084 (2013)
$\sigma^{fid}(W{ o}e u,\mu u)/\sigma^{fid}(Z{ o}ee,\mu\mu)$	Ratio = 10.7 ± 0.08 ± 0.11 (data) FEWZ+HERAPDF1.5 NNLO (theory)		0.035	PRD 85, 072004 (2012)
$-[n_{jet} \ge 1]$	Ratio = 8.54 ± 0.02 ± 0.25 (data) Blackhat (theory)		4.6	Eur. Phys. J. C 74: 3168 (2014)
$-[n_{jet} \geq 2]$	Ratio = 8.64 ± 0.04 ± 0.32 (data) Blackhat (theory)		4.6	Eur. Phys. J. C 74: 3168 (2014)
$-[n_{jet} \geq 3]$	Ratio = 8.18 ± 0.08 ± 0.51 (data) Blackhat (theory)		4.6	Eur. Phys. J. C 74: 3168 (2014)
$-[n_{jet} \ge 4]$	Ratio = 7.62 ± 0.19 ± 0.94 (data) Blackhat (theory)		4.6	Eur. Phys. J. C 74: 3168 (2014)
$\sigma^{\rm fid}(W+Z \rightarrow qq)$	$\sigma = 8.5 \pm 0.8 \pm 1.5 \text{ pb (data)} \\ \text{MCFM (theory)}$		4.6	New J. Phys. 16, 113013 (2014
0.	.0 0.2 0.4 0.6 0.8 1.0 1	2 1.4 1.6 1.8 2.0 2.2		
		observed/theorv		

W+jets production

- Testing theoretical models up to N_{jet} =7 and p_T^{jet} = 1 TeV
- No model provides accurate description for all studied

ALPGEN+HERWIG: LO multileg (up to 5 extra partons)
SHERPA: LO multileg (up to 4 extra partons)
BLACKHAT + SHERPA: NLO
Exclusive sum approach: combine NLO W + n jets & W + ≧ n+1 jets

MEPS@NLO: Combine NLO (W + 1/2 jets) + LO multileg (up to 4 jets) **LoopSim**: approx. NNLO **HEJ**: approx. all order for W + ≥ 2 jets

W+jets/Z+jets cross-section ratios

- Sensitivity for differences between Z+jets and W+jets
- Large cancellation of experimental uncertainties and non-perturbative QCD effects

- NLO pQCD calculations of BlackHat+Sherpa agree well in general with the data, except in specific regions → large success of recent theory advances
- Still opportunities for further tuning

Multi-boson production

Multiboson Cross	Section Measurements	Status: March 20	015	∫£ dt [fb ^{−1}]	Reference
$\sigma^{\rm fid}(\gamma\gamma)[\Delta R_{\gamma\gamma} > 0.4]$	$\sigma = 44.0 + 3.2 - 4.2 \text{ pb (data)}$	ΔΤΙΔς	Preliminary	4.9	JHEP 01, 086 (2013)
$\sigma^{\rm fid}(W\gamma \to \ell \nu \gamma)$	σ = 2.77 ± 0.03 ± 0.36 pb (data) NNLO (theory)	AILAO		4.6	PRD 87, 112003 (2013)
$-[n_{jet}=0]$	$\sigma = 1.76 \pm 0.03 \pm 0.22$ pb (data) NNLO (theory)	Run 1	$\sqrt{s} = 7, 8 \text{ TeV}$	4.6	PRD 87, 112003 (2013)
$\sigma^{\rm fid}(Z\gamma o \ell\ell\gamma)$	$\sigma = 1.31 \pm 0.02 \pm 0.12 \text{ pb (data)}$ NNLO (theory)			4.6	PRD 87, 112003 (2013) arXiv:1407.1618 [hep-ph]
$-[n_{jet}=0]$	$\sigma = 1.05 \pm 0.02 \pm 0.11 \text{ pb (data)}$ NNLO (theory)			4.6	PRD 87, 112003 (2013)
$\sigma^{\rm fid}(W\gamma\gamma \to \ell \nu \gamma \gamma)$	$\sigma = 6.1 + 1.1 - 1.0 \pm 1.2 \text{ fb (data)} \\ \text{MCFM NLO (theory)}$		Δ	20.3	arXiv:1503.03243 [hep-ex]
$-[n_{jet}=0]$	$\sigma = 2.9 + 0.8 - 0.7 + 1.0 - 0.9 \text{ fb} \text{ (data)} \\ \text{MCFM NLO (theory)}$	٨		20.3	arXiv:1503.03243 [hep-ex]
$\sigma^{\rm fid}(\mathbf{pp} \rightarrow \mathbf{WV} \rightarrow \ell \nu \mathbf{qq})$	$\sigma = 1.37 \pm 0.14 \pm 0.37 \text{ pb} \text{ (data)} \\ \text{MC@NLO (theory)} $			4.6	JHEP 01, 049 (2015)
$\sigma^{ m fid}({\sf W}^{\pm}{\sf W}^{\pm}{ m jj})$ EWK	$\sigma = 1.3 \pm 0.4 \pm 0.2 \text{ fb} \text{ (data)} \\ \text{PowhegBox (theory)} $	Δ		20.3	PRL 113, 141803 (2014)
$\sigma^{\text{total}}(pp \rightarrow WW)$	$\sigma = 51.9 \pm 2.0 \pm 4.4 \text{ pb} (data)$ $m \text{GFM} (heory)$ $\sigma = 71.4 \pm 1.2 \pm 5.5 - 4.9 \text{ pb} (data)$ $m \text{GFM} (heory)$			4.6 20.3	PRD 87, 112001 (2013) ATLAS-CONF-2014-033
$-\sigma^{\text{fid}}(WW \rightarrow ee) [n_{\text{jet}}=0]$	$\sigma = 56.4 \pm 6.8 \pm 10.0 \text{ fb (data)}$ MCFM (theory)			4.6	PRD 87, 112001 (2013)
$-\sigma^{\text{fid}}(WW \rightarrow \mu\mu) [n_{\text{jet}}=0]$	$\sigma = 73.9 \pm 5.9 \pm 7.5 \text{ fb} \text{ (data)} \\ \text{MCFM (theory)} $		$1 \text{HC} \text{ pp} \sqrt{c} = 7 \text{TeV}$	4.6	PRD 87, 112001 (2013)
$-\sigma^{fid}$ (WW \rightarrow e μ) [n _{jet} =0]	$\sigma = 262.3 \pm 12.3 \pm 23.1 \text{ fb} \text{ (data)}$		Theory	4.6	PRD 87, 112001 (2013)
$-\sigma^{fid}(WW \rightarrow e\mu) [n_{jet} \ge 0]$	$\sigma = 563.0 \pm 28.0 + 79.0 - 85.0$ fb (data) MCFM (theory)		Observed	4.6	arXiv:1407.0573 [hep-ex]
$\sigma^{\text{total}}(pp \rightarrow WZ)$	$\sigma = 19.0 + 1.4 - 1.3 \pm 1.0 \text{ pb (data)}$ $MCFM (theory)$ $\sigma = 20.3 + 0.8 - 0.7 + 1.4 - 1.3 \text{ pb (data)}$ $MCFM (theory)$		stat stat+syst	4.6 13.0	EPJC 72, 2173 (2012) ATLAS-CONF-2013-021
$-\sigma^{\text{fid}}(WZ \rightarrow \ell \nu \ell \ell)$	$\sigma = 99.2 + 3.8 - 3.0 + 6.0 - 6.2$ fb (data) MCFM (theory)		1HC pp $\sqrt{c} = 8 \text{ToV}$	13.0	ATLAS-CONF-2013-021
$\sigma^{\text{total}}(pp \rightarrow ZZ)$	$\sigma = 6.7 \pm 0.7 \pm 0.5 = 0.4 \text{ pb} (\text{data})$ $\sigma = 7.1 \pm 0.5 = 0.4 \pm 0.4 \text{ pb} (\text{data})$ $\sigma = 7.1 \pm 0.5 = 0.4 \pm 0.4 \text{ pb} (\text{data})$			4.6 20.3	JHEP 03, 128 (2013) ATLAS-CONF-2013-020
$-\sigma^{\text{total}}(pp \rightarrow ZZ \rightarrow 4\ell)$	$\sigma = 76.0 \pm 18.0 \pm 3.0 \text{ tb} (\text{data})$ $\sigma = 107.0 \pm 9.0 \pm 5.0 \text{ tb} (\text{data})$ $\sigma = 107.0 \pm 9.0 \pm 5.0 \text{ tb} (\text{data})$		Observed	4.5 20.3	arXiv:1403.5657 [hep-ex] arXiv:1403.5657 [hep-ex]
$-\sigma^{\mathrm{fid}}(ZZ o 4\ell)$	$\sigma = 25.4 + 33.3 - 3.0 + 1.6 - 1.4 \text{ fb} (data) PowheegBox & go2ZZ (theory) \sigma = 20.7 + 1.3 - 1.2 \pm 1.0 \text{ fb} (data) $	•	stat stat+syst	4.6 20.3	JHEP 03, 128 (2013) ATLAS-CONF-2013-020
$-\sigma^{\mathrm{fid}}(ZZ^* o 4\ell)$	$\sigma = 29.8 + 3.8 - 3.5 + 2.1 - 1.9 \text{ fb (data)} \\ \text{PowhegBox \& gg2ZZ (theory)} $			4.6	JHEP 03, 128 (2013)
$-\sigma^{fid}(ZZ^* \to \ell\ell\nu\nu)$	$\sigma = 12.7 + 3.1 - 2.9 \pm 1.8 \text{ fb} \text{ (data)}$ PowhegBox & gg2ZZ (the			4.6	JHEP 03, 128 (2013)
	0.2 0.4 0.6 0.8 1.0 1.2	1.4 1.6 1.8	2.0 2.2 2.4 2.6		
		aha	arvad/thear	,	

- 2.1 σ excess wrt SM prediction: $\sigma_{WW}^{\text{tot}} = 71.4 \, {}^{+1.2}_{-1.2}(\text{stat}) \, {}^{+5.0}_{-4.4}(\text{syst}) \, {}^{+2.2}_{-2.1}(\text{lumi}) \, \text{pb}_{\pm}$
- Theory prediction by MCFM: $58.7^{+3.0}_{-2.7}$ pb
 - − $qq/qg \rightarrow$ WW NLO QCD (including off-shell bosons and decays)
 - Large scale uncertainty 5-7% (but underestimated?)
 - First NNLO (on-shell only) predicts 10% increase in cross-section, with similar scale uncertainties: 54.8+3.7-2.9 → 59.7+2.2-1.8 @ 8 TeV, PRL 113 (2014) 212001
 - NNLO includes $gg \rightarrow WW$
 - LO gg → WW: 1.4 +0.3-0.2 pb
 - higher order: factor 2-3 increase possible
 - NNLO+NNLL QCD, NLO EW gg \rightarrow H \rightarrow WW : 4.1 ± 0.5 pb
- NLO EW corrections can be as large as 15% at high p_T
- Jet veto (to supress large tt background) subject to large QCD uncertainty

WW+WZ production

- 2 jets+ e/μ final state: 3.4 σ significance
- **Observed cross-section:** 68 ± 7 (stat.) ±19 (syst.) pb
- new physics

 $\mathcal{L} = ig_{WWV} \left(g_1^V (W_{\mu\nu}^+ W^{-\mu} - W^{+\mu} W_{\mu\nu}^-) V^\nu + \kappa_V W_{\mu}^+ W_{\nu}^- V^{\mu\nu} + \frac{\lambda_V}{M_{\nu\nu}^2} W_{\mu\nu}^{\nu+} W_{\nu}^{-\rho} V_{\rho}^\mu \right)$

 $+ig_4^V W^+_\mu W^-_\nu (\partial^\mu V^\nu + \partial^\nu V^\mu) - ig_5^V \epsilon^{\mu\nu\rho\sigma} (W^+_\mu \partial_\rho W^-_\nu - \partial_\rho W^+_\mu W^-_\nu) V_\sigma$

 $+ \tilde{\kappa}_V W^+_{\mu} W^-_{\nu} \tilde{V}^{\mu\nu} + \frac{\tilde{\lambda}_V}{m^2_{--}} W^{\nu+}_{\mu} W^{ho}_{\nu} \tilde{V}^{\mu}_{
ho} \Big)$

$W\gamma\gamma$ production

- First evidence for triple gauge boson production: >3σ significance
- High di-photon mass region sensitive to new physics
- Wyy production is particularly sensitive to f_{T0}/Λ^4 ($\mathcal{L}_{T,0} = \operatorname{Tr}\left[\hat{W}_{\mu\nu}\hat{W}^{\mu\nu}\right] \times \operatorname{Tr}\left[\hat{W}_{\alpha\beta}\hat{W}^{\alpha\beta}\right]$)

Top physics

Heaviest known elementary particle
Coupling to Higgs ~O(1)
→ Closely connected to EWSB

In BSM models, such as technicolor or other scenarios with strongly coupled Higgs sector, top couplings can be modified

 \rightarrow Measure top couplings directly

Top mass

Measurement from many channels Dominant systematics: jet energy scale Theory question: what is top mass?

Carleton

- Measured in many different final states
- Total cross-section well-described by NNLO+NNLL
- Differential (resolved and boosted) cross-sections are important to understand the tt process
- tt is main background for many searches
- Improved modelling uncertainties help sensitivity of searches (e.g. l+jets tt resonance search in this talk)

Single top production

ttV production

		Trilepton and same-sign dilepton channels				
Assumption	Process	Signal Strength	Observed σ	Expected σ		
SM σ(ttZ)/σ(ttW)	$t\bar{t}V$	$0.91^{+0.27}_{-0.24}$	4.6	4.6		
SM σ(ttZ)	tīW	$1.31^{+0.62}_{-0.50}$	3.0	2.3		
SM σ(ttW)	tīZ	$0.72^{+0.33}_{-0.28}$	2.8	3.4		
. ,		Δ7	LAS-CONE	-2014-038		

Direct search for tt γ production in l+jets+ γ final state

Gabriella.Pasztor@cern.ch : Recent results from ATLAS

Spin correlation and limits on SUSY

- Measurement of the correlation of the spins of the top and anti-top quarks in tt production provides a precision test of the SM and sensitive to new BSM physics
- Fit azimuthal angle difference between the charged leptons: f_{SM} *PDF(SM)+(1- f_{SM})*PDF(no correlation) \rightarrow f_{SM} = 1.2 ± 0.05 (stat) ± 0.13 (syst)
- Spin correlation strength: $A_{helicity} = (N_{\uparrow\uparrow} N_{\uparrow\downarrow})/(N_{\uparrow\uparrow} N_{\uparrow\downarrow}) = A_{helicity,SM} * f_{SM} = 0.38 \pm 0.04$

Constrain BSM models, e.g. SUSY

tt production at 13 TeV

Simultaneous tt, WW, $Z \rightarrow \tau \tau$ measurement

- Opposite-sign eµ
- Discriminants:
 - MET
 - 0 / \geq 1 jet
- Unified measurement (object definitions, background estimation, fiducial volume)
- Correlations due to pdf's taken into account
- Correlated NLO predictions for tt and Z→ττ underestimate data, while NNLO describes them well

Jet physics

Inclusive Jet Cross Section Measurements Status: March 2015 $\sigma = 712.3 \pm 1.9 + 79.9 - 76.0$ nb (data) Incl. jet R=0.6, |y| < 3.0 $= 187.0 \pm 0.9 + 15.1 - 15.0$ nb (data) $-|y| < 0.5, 0.1 < p_T < 2$ TeV $r = 172.7 \pm 0.9 + 15.9 - 14.3$ nb (data) $-0.5 < |y| < 1.0, 0.1 < p_T < 2$ TeV $= 139.8 \pm 0.9 \pm 16.5 - 16.2$ nb (data) $-1.0 < |y| < 1.5, 0.1 < p_T < 2$ TeV = 105.5 ± 0.7 + 16.0 - 15.2 nb (data) $-1.5 < |y| < 2.0, 0.1 < p_T < 2$ TeV Ο $-2.0 < |y| < 2.5, 0.1 < p_T < 0.9$ TeV = 69.7 ± 0.6 + 13.5 - 12.7 nb (data) D $= 37.5 \pm 0.4 + 9.4 - 8.4$ nb (data) $-2.5 < |y| < 3.0, 0.1 < p_T < 0.5$ TeV 0 Incl. jet R=0.4, |y| < 3.0= 563.9 ± 1.5 + 55.4 - 51.4 nb (data) 0 = 145.1 ± 0.8 + 10.7 - 10.6 nb (data) $-|y| < 0.5, 0.1 < p_T < 2$ TeV 0 LHC pp $\sqrt{s} = 7$ TeV = 136.9 ± 0.8 + 10.9 - 10.5 nb (data) $-0.5 < |y| < 1.0, 0.1 < p_T < 2$ TeV Ο Theory NLOJet++, CT10 $= 112.2 \pm 0.7 + 11.0 - 10.2$ nb (data) $-1.0 < |y| < 1.5, 0.1 < p_T < 2$ TeV 0 Observed 4.5 fb⁻¹ = 83.5 ± 0.6 + 11.1 - 9.7 nb (data) $-1.5 < |y| < 2.0, 0.1 < p_T < 2$ TeV stat stat+svst = 57.1 ± 0.4 + 10.4 - 9.1 nb (data) $-2.0 < |y| < 2.5, 0.1 < p_T < 0.9$ TeV $= 29.13 \pm 0.31 + 7.5 - 6.38$ nb (data) $-2.5 < |y| < 3.0, 0.1 < p_T < 0.5$ TeV $= 119.0 \pm 0.4 + 10.9 - 10.3$ nb (data) Dijet R=0.6, |y| < 3.0, $y^* < 3.0$ Incl. jet: arXiv:1410.8857 [hep-ex] $r = 48.21 \pm 0.23 + 4.03 - 3.8$ nb (data) $-y^* < 0.5, 0.3 < m_{ii} < 4.3$ TeV Dijet: JHEP 05, 059 (2014) $-0.5 < y^* < 1.0, 0.3 < m_{ii} < 4.3$ TeV $= 51.47 \pm 0.32 \pm 4.76 - 4.44$ nb (data) $= 13.82 \pm 0.11 \pm 1.44 - 1.42$ nb (data) $-1.0 < y^* < 1.5, 0.5 < m_{ii} < 4.6$ TeV $= 4.93 \pm 0.06 + 0.69 - 0.65$ nb (data) $-1.5 < y^* < 2.0, 0.8 < m_{ii} < 4.6$ TeV 0 = 505.0 ± 15.1 + 102.4 - 92.4 pb (data) $-2.0 < y^* < 2.5, 1.3 < m_{ii} < 5$ TeV 0 = 26.9 ± 4.2 + 7.7 - 6.4 pb (data) $-2.5 < y^* < 3.0, 2 < m_{ii} < 5$ TeV $= 86.87 \pm 0.26 + 7.56 - 7.2$ nb (data) Dijet R=0.4, |y| < 3.0, $y^* < 3.0$ 0 = 35.47 ± 0.15 + 2.79 - 2.66 nb (data) $-y^* < 0.5, 0.3 < m_{ii} < 4.3$ TeV Ο **ATLAS** Preliminary $-0.5 < y^* < 1.0, 0.3 < m_{ii} < 4.3$ TeV $= 37.33 \pm 0.2 + 3.25 - 3.03$ nb (data) 0 $= 10.12 \pm 0.07 + 1.02 - 1.03$ nb (data) $-1.0 < y^* < 1.5, 0.5 < m_{ii} < 4.6$ TeV 0 $\sqrt{s} = 7 \text{ TeV}$ Run 1 $-1.5 < y^* < 2.0, 0.8 < m_{ii} < 4.6$ TeV + 0.04 + 0.51 - 0.49 nb (data) O = 371.0 ± 9.7 + 81.5 - 72.1 pb (data) $-2.0 < y^* < 2.5, 1.3 < m_{ii} < 5$ TeV 0 $= 16.0 \pm 2.0 + 5.4 - 4.3$ pb (data) $-2.5 < y^* < 3.0, 2 < m_{ii} < 5$ TeV 1.4 0.4 0.6 0.8 1.0 1.2 1.6 observed/theory

Jet physics

Inclusive searches within MSUGRA

Many complementary inclusive searches...

Searches for stop

('clever trick' to fill the gap)

Gaps in the exclusion come from cases where the stop signal looks like background, either tt or WW → "stealth stop" 30 June 2015 Gabriella.Pasztor@cern.ch : Recent results from ATLAS

Light stop needed for SUSY to solve the Higgs mass fine-tuning in the SM

Assuming m(t[~])<m(χ^+_1), four decay modes separately considered with BR=100%

- 1) $t^{\sim} \rightarrow t \chi^{0}_{1}$
- 2) $t^{\sim} \rightarrow Wb\chi_{1}^{0}$ for m(t^)<m(t)+m(χ_{1}^{0}) (off-shell top, 3-body decay)
- 3) $t^{\sim} \rightarrow c \chi_{1}^{0}$ (flavour changing 2-body decay)
- 4) $t^{\sim} \rightarrow ff' b \chi_{1}^{0}$ (off-shell W / 4-body decay)

Overlay contours belonging to different stop decay channels, different sparticle mass hierarchies, and simplified decay scenarios!

Searches for electroweak SUSY production

Theoretical signal cross section uncertainties not included

Four decay modes separately considered with BR=100% 1) $\chi^{\pm}_{1} \rightarrow I \nu \chi^{0}_{1}$ $\chi^0_2 \rightarrow 2I\chi^0_1 / 2\nu\chi^0_1$ 2) $\chi^{\pm}_{1} \rightarrow \tau \nu \chi^{0}_{1}$ $\chi^0_2 \rightarrow 2\tau \chi^0_1 / 2\nu \chi^0_1$ 3) $\chi^{\pm}_{1} \rightarrow W^{\pm} \chi^{0}_{1}$ $\chi^0_2 \rightarrow Z \chi^0_1$ 4) $\chi^{\pm}_{1} \rightarrow W^{\pm} \chi^{0}_{1}$ $\chi^0_2 \rightarrow h \chi^0_1$ For $\chi^{\pm}_1 \chi^0_2$: $m(\chi^{\pm}_{1})=m(\chi^{0}_{2})$ $m(l^{~}/v^{~}/\tau^{~})$

 $= \frac{1}{2} (m(\chi^{\pm}_{1}) + m(\chi^{0}_{1}))$

30 June 2015

Searches for long-lived SUSY particles

Split-SUSY scenario with a long-lived gluino R-hadron

Also showing for comparison the limits for prompt decay and stable particle

Split SUSY offers

- Dark matter candidate
- Gauge unification but does not solve naturalness

Light gauginos, higgsinos Heavy gravitino, sfermions

- Gluinos are light but squarks are very heavy \rightarrow gluino long-lived (decays via extremely virtual squark)
- Long lived gluino is coloured \rightarrow forms R-hadron bound states with quarks/gluons
- Gluino decays to 2 quarks and the LSP with a lifetime depending on the squark mass

Mass limits in SUSY searches

A huge number of SUSY searches in run-1, but with no evidence of a signal

ATLAS SUSY Searches* - 95% CL Lower Limits Status: Feb 2015

ATLAS Preliminary $\sqrt{s} = 7, 8$ TeV

	Model	e, μ, τ, γ	Jets	$E_{\rm T}^{\rm miss}$	∫ <i>L dt</i> [fb	¹] Mass limit	Reference
	MSUGDA/CMSSM	0	2-6 iets	Voc	20.3	α σ 17 Το Υ m(ā)-m(ā)	1405 7975
		0	2-0 jets 2-6 jets	Voc	20.3	4, 8 1.7 TeV m(q)=m(g) ã 850 GoV m(\tilde{v}^0) 0 GoV m(15 an ã) m(200 an ã)	1405.7875
Inches	$qq, q \rightarrow q\chi_1$	1 2	0-1 iet	Voc	20.3		1403.7675
	$qq\gamma, q \rightarrow q\chi_1$ (compressed)	0	2-6 iete	Voo	20.0	$m(\tilde{g}) = m(\tilde{g})$	1405 7975
	$gg, g \rightarrow qq\chi_1$ \tilde{v}^{\pm} $w^{\pm} \tilde{v}^0$	1.6.1	2-6 jots	Vee	20.3		1403.7675
ea	$gg, g \rightarrow qqx_1 \rightarrow qqw^{-}x_1$	1 ε,μ 2 ε.μ	0-3 jets	165	20	$\frac{8}{2}$ 1.2 TeV $m(x_1)<500$ GeV, $m(x_2)=0.5(m(x_1)+m(g))$	1501.03555
S	$gg, g \rightarrow qq(\ell\ell/\ell\nu/\nu\nu)\ell_1$	$2e,\mu$	0-2 jets	Voo	20	8 1.32 lev m(t₁)=0 GeV	1407.0602
ive	GGM (bing NLSP)	1-21+0-11	0-2 jeta	Vee	20.3		ATLAS CONF 2014 001
Ins	GGM (wine NLSP)	1	_	Yee	20.3		ATLAS-CONF-2014-001
uci	CCM (biggsing bing NLCD)	$1e, \mu + \gamma$		res	4.8	s 619 GeV $m(x_1)>50 GeV$	ATLAS-CONF-2012-144
-	GGM (higgsing NLSP)	2	1 D	Yes	4.8	g g	
	GGM (Higgsino NLSP)	$\geq e, \mu(Z)$	0-3 jets	Yes	5.8		ATLAS-CONF-2012-152
	Gravitino LSP	0	mono-jet	Yes	20.3	F ^{1/2} scale 865 GeV m(G)>1.8 × 10 ° eV, m(g)=m(q)=1.5 leV	1502.01518
5 T	$\tilde{g} \rightarrow b \bar{b} \tilde{\chi}_{1}^{0}$	0	3 <i>b</i>	Yes	20.1	<i>˜</i> 1.25 TeV m(λ ⁰ ₁)<400 GeV	1407.0600
ge	$\tilde{g} \rightarrow t \bar{t} \tilde{\chi}_{1}^{0}$	0	7-10 jets	Yes	20.3	<u>\$ 1.1 TeV</u> m(ℓ ⁺ ₁) <350 GeV	1308.1841
n d	$\tilde{g} \rightarrow t \bar{t} \tilde{\chi}_{1}^{0}$	0-1 <i>e</i> ,μ	3 <i>b</i>	Yes	20.1	<u><i>š</i></u> 1.34 TeV m(<i>č</i> ¹)<400 GeV	1407.0600
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\tilde{g} \rightarrow b \bar{t} \tilde{\chi}_{1}^{+}$	0-1 <i>e</i> ,μ	3 b	Yes	20.1	<b>ğ 1.3 TeV</b> m(λ ⁰ ₁ )<300 GeV	1407.0600
5	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_1^0$	0	2 b	Yes	20.1	$\tilde{b}_1$ <b>100-620 GeV</b> m( $\tilde{k}_1^0$ )<90 GeV	1308.2631
io X	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow t \tilde{\chi}_1^{\pm}$	2 e, µ (SS)	0-3 b	Yes	20.3	$\tilde{b}_1$ 275-440 GeV $m(\tilde{\chi}_1^+)=2 m(\tilde{\chi}_1^0)$	1404.2500
nct	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow b\tilde{\chi}_1^{\pm}$	1-2 e, µ	1-2 b	Yes	4.7	$\tilde{I}_1$ <b>110-167 GeV</b> $g(\tilde{X}_1^+) = 2m(\tilde{X}_1^0), m(\tilde{X}_1^0) = 55 \text{ GeV}$	1209.2102, 1407.0583
bg	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow W h \tilde{\chi}_1^0$ or $t \tilde{\chi}_1^0$	2 e, µ	0-2 jets	Yes	20.3	<i>τ</i> ₁ 90-191 GeV 215-530 GeV m( <i>x</i> ⁰ )=1 GeV	1403.4853, 1412.4742
n.	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow t\tilde{\chi}_1^0$	0-1 e, µ	1-2 b	Yes	20	$\tilde{i}_1$ <b>210-640 GeV</b> $m(\tilde{x}_1^0)=1$ GeV	1407.0583,1406.1122
ge	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow c\tilde{\chi}_1^0$	0 m	nono-jet/c-1	tag Yes	20.3	7 90-240 GeV m(n)-m(x ⁰ )<85 GeV	1407.0608
ire	$\tilde{t}_1 \tilde{t}_1$ (natural GMSB)	$2 e, \mu (Z)$	1 b	Yes	20.3	<i>i</i> ₁ 150-580 GeV m( <i>i</i> ⁰ / ₂ )>150 GeV	1403.5222
бŚ	$\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z$	3 e, µ (Z)	1 <i>b</i>	Yes	20.3	$\tilde{I}_2$ <b>290-600 GeV</b> m( $\tilde{l}_1^0$ )<200 GeV	1403.5222
	$\tilde{l}_{i} = \tilde{l}_{i} = \tilde{l}_{i} \ge l \tilde{Y}_{i}^{0}$	2 e. u	0	Vec	20.3		1403 5294
	$\tilde{V}_{L,R}^+ \tilde{V}_{-}^- \tilde{V}_{+}^+ \longrightarrow \tilde{\ell}_{V}(\ell \tilde{v})$	2 e u	0	Voe	20.3	$\tilde{r}^{\pm}$ 140.465 GoV $m(\tilde{r}^{\pm}) = 0$ GoV $m(\tilde{r}^{\pm}) = 0$ $S(m(\tilde{r}^{\pm})) = 0$	1403 5294
*	$\tilde{X}_1 X_1, X_1 \rightarrow U(U)$ $\tilde{Y}_1^+ \tilde{Y}_1^- \tilde{Y}_1^+ \rightarrow \tilde{T}_U(\tau \tilde{U})$	27	-	Vac	20.0	$x_1$ $m(x_1) = 0$ $dev$ $m(x_1) = 0$ $dev$ $m(x_1) = 0$	1407.0350
ec V	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^0$ , $\tilde{\ell}_1 \rightarrow \tilde{\ell} \ell (\tilde{\ell} \ell)$	3.0 11	0	Voc	20.0	$A_1$ ito 555 GeV m(x), y=0.500 (GeV m(x), y=0.500	1402 7020
ШË	$\tilde{x}_1 \tilde{x}_2 \rightarrow t_L v t_L t(vv), t v t_L t(vv)$ $\tilde{v}_1^{\pm} \tilde{v}_1^0 = w \tilde{v}_1^0 z \tilde{v}_1^0$	2.3 0 11	0-2 inte	Voc	20.0	$\lambda_1 \lambda_2$ $100 \text{ GeV}$ $m(x_1) = m(x_1) = 0.0 (m(x_1) = 0.0 (m(x_1) + m(x_1))$	1403 5294 1402 7029
	$\chi_1 \chi_2 \rightarrow W \chi_1 Z \chi_1$ $\tilde{\nu}^{\pm} \tilde{\nu}^0 = W \tilde{\nu}^0 L \tilde{\nu}^0 L L L L U U U L$	ε μ γ	02 1013	Voo	20.3	$m(x_1) = m(x_2)$ , $m(x_1) = 0$ , sieptons decoupled $m(x_1) = m(x_2)$ , $m(x_1) = 0$ , sieptons decoupled $m(x_1) = m(x_2)$ , $m(x_1) = 0$ , sieptons decoupled	1501.07110
	$\chi_1 \chi_2 \rightarrow W \chi_1 n \chi_1, n \rightarrow DD/W W/TT/2$	γγ C,μ, γ 1 e.u	0-20	Vee	20.3	$x_1, x_2$ <b>250 GeV</b> $m(x_1)=m(x_2), m(x_1)=n(x_2), m(x_1)=n(x_2)$	1405 5096
	$\chi_2\chi_3, \chi_{2,3} \to \ell_R \ell$	4 ε,μ	0	tes	20.3	$m(x_2) = m(x_3), m(x_1) = 0, m(x_2) + m(x_1))$	1405.5066
7	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$	Disapp. trk	1 jet	Yes	20.3	$\tilde{\chi}_1^*$ 270 GeV $m(\tilde{\chi}_1^0)=160$ MeV, $\tau(\tilde{\chi}_1^+)=0.2$ ns	1310.3675
ec ec	Stable, stopped $\tilde{g}$ R-hadron	0	1-5 jets	Yes	27.9	$\tilde{s}$ 832 GeV $m(\tilde{\chi}_1^0)=100$ GeV, $10 \mu s < \tau(\tilde{g}) < 1000$ s	1310.6584
i-liv	Stable g R-hadron	trk	-	-	19.1	<u><i>š</i></u> 1.27 TeV	1411.6795
ng	GMSB, stable $\tilde{\tau}, \tilde{\chi}_1^0 \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau(e,$	μ) 1-2 μ	-	-	19.1	$\tilde{\chi}_1^{0}$ 537 GeV 10 <tan<math>\beta&lt;50</tan<math>	1411.6795
p	GMSB, $\tilde{\chi}_{1}^{0} \rightarrow \gamma \tilde{G}$ , long-lived $\tilde{\chi}_{1}^{0}$	2γ	-	Yes	20.3	$\tilde{\chi}_1^0$ <b>435 GeV</b> $2<\tau(\tilde{\chi}_1^0)<3$ ns, SPS8 model	1409.5542
	$\tilde{q}\tilde{q}, \tilde{\chi}_{1}^{0} \rightarrow qq\mu$ (RPV)	1 $\mu$ , displ. vtx	-	-	20.3	$\tilde{q}$ <b>1.0 TeV</b> 1.5 < $c\tau$ <156 mm, BR( $\mu$ )=1, m( $\tilde{\chi}_1^0$ )=108 GeV	ATLAS-CONF-2013-092
	LFV $pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e + \mu$	2 e, µ	-	-	4.6	$\bar{\nu}_{\tau}$ <b>1.61 TeV</b> $\lambda'_{311}$ =0.10, $\lambda_{132}$ =0.05	1212.1272
	LFV $pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e(\mu) + \tau$	$1 e, \mu + \tau$	-	-	4.6	$\tilde{v}_r$ <b>1.1 TeV</b> $\lambda'_{311}=0.10, \lambda_{1(2)33}=0.05$	1212.1272
~	Bilinear RPV CMSSM	2 e, µ (SS)	0-3 b	Yes	20.3	$\tilde{q}, \tilde{g}$ <b>1.35 TeV</b> $m(\tilde{q})=m(\tilde{g}), c\tau_{LSP} < 1 mm$	1404.2500
P	$\tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow W \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow e e \tilde{v}_{\prime\prime}, e \mu \tilde{v}_{\rho}$	4 e,μ	-	Yes	20.3	$\tilde{\chi}_1^{\pm}$ 750 GeV $m(\tilde{\chi}_1^0) > 0.2 \times m(\tilde{\chi}_1^{\pm}), \lambda_{121} \neq 0$	1405.5086
Œ	$\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow W \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow \tau \tau \tilde{\nu}_{\tau}, e \tau \tilde{\nu}_{\tau}$	$3e, \mu + \tau$	-	Yes	20.3	$\tilde{\chi}_{1}^{\pm}$ 450 GeV $m(\tilde{\chi}_{1}^{0}) > 0.2 \times m(\tilde{\chi}_{1}^{\pm}), \lambda_{133} \neq 0$	1405.5086
	$\tilde{g} \rightarrow q \bar{q} q$	0	6-7 jets	-	20.3	<i>§</i> 916 GeV BR( <i>t</i> )=BR( <i>b</i> )=0%	ATLAS-CONF-2013-091
	$\tilde{g} \rightarrow \tilde{t}_1 t, \tilde{t}_1 \rightarrow bs$	2 e, µ (SS)	0-3 b	Yes	20.3	ž 850 GeV	1404.250
Other	Scalar charm. $\tilde{c} \rightarrow c \tilde{\chi}_1^0$	0	2 c	Yes	20.3		1501.01325
Other		-	_				J
	$\sqrt{s} = 7 \text{ TeV}$ full data p	√s = 8 TeV artial data	$\sqrt{s} = full$	8 TeV data	1	¹ Mass scale [TeV]	

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 $\sigma$  theoretical signal cross section uncertainty. Gabriella.Pasztor@cern.cn : Kecent results from AILAS



#### SUSY discovery potential in Run2





Assuming 20-25% uncertainty on total background rate based on Run-1 analysis experience 3σ evidence above the Run-1 limits cam be obtained with less than 5/fb of 13 TeV data

#### **Beyond SUSY**



ATLAS Preliminary

 $\int \mathcal{L} dt = (1.0 - 20.3) \text{ fb}^{-1} \quad \sqrt{s} = 7, 8 \text{ TeV}$ 

#### ATLAS Exotics Searches* - 95% CL Exclusion

Status: March 2015



*Only a selection of the available mass limits on new states or phenomena is shown





#### tt resonances with I + jets







#### SSM W' $\rightarrow$ WZ with modified couplings to W,Z (EGM)



#### Keep looking for diboson events at 13 TeV!





#### Dijet search

- No excess in dijet mass distribution •
- Contact interactions searched for in angular distributions of ٠ high-mass events





#### Summary



- Many interesting results from Run 1
- SM-like Higgs discovered and its properties are probed with increasing precision
- Large advances in experimental techniques and theoretical calculations promise high precision measurements and good sensitivity for new physics in Run2
- ATLAS started Run2 excellently with an improved detector
- Looking forward to new discoveries at LHC!