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QCD at high energy in the Parton Reggeization Approach

Outline.

This talk continues the parallel session reports by A. V. Shipilova and M. A.
Nefedov.
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QCD at high energy in the Parton Reggeization Approach

Introduction

The hard processes (i. e. the inelastic processes involving high momentum transfer
Q2 � 1 GeV2) are the major tool to study the fundamental interactions, both
QCD and EW, at hadron colliders, since the most interesting fundamental
particles (W±, Z0, H, t, b, t̃, ...) are heavy.
Thanks to asympthotic freedom of QCD, and a special kinematics of the hard
collision, it is possible to separate the perturbative and nonperturbative dynamics,
systematically parametrize nonperturbative part, calculate hard subprocess in the
perturbation theory, and therefore put the whole problem under quantitative
control.
Currently, the studies of the hard processes in pQCD are developing along the
lines of four complementary approaches:

Fixed-order canculations in the Collinear Parton Model (CPM)
Soft gluon/logarithmic resummation techniques
LO, NLO, (NNLO) + Parton Shower Monte-Carlo techniques
TMD factorization, kT -factorization

The talk will be devoted mostly to the last class of approaches, which try to
generalize the conventional Collinear Parton Model.
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QCD at high energy in the Parton Reggeization Approach

Collinear factorization, naive approach.

We collide two protons with
√
S �� ΛQCD and look on the system of the

final-state particles with witch the high scale Q2 � Λ2
QCD (e. g. invariant mass or

transverse momentum) can be associated.
Due to asymptotic freedom, this hard part of the final state is produced in the
hard subprocess, as a result of the collision of quarks and gluons.
The time scale of the hard subprocess is τH ∼ 1/Q, and the time scale for the
dynamics of the bound state is τp ∼ 1/ΛQCD � τH , so hard subprocess
should be essentially independent on the dynamics of the bound state.
The protons are highly boosted, so the momentum of the partons is
dominated by one light-cone component q+ = x

√
S/2� qT ∼ ΛQCD.

So the following asatz should be OK for phenomenology:

dσ =
∑

p1,p2

1∫

0

dx1

1∫

0

dx2fp1 (x1)fp2 (x2)dσ̂p1p2 (q1, q2),

where q1 = x1P1, q2 = x2P2, P 2
1,2 = 0, 2P1P2 = S. And dσ̂ is calculated order by

order in QCD perturbation theory.
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QCD at high energy in the Parton Reggeization Approach

Collinear factorization, DGLAP evolution.

P2

Y

↓ qn

k → ↓ qn−1

↓ q0

↓ q1



 f(x0, Q2

0)



 ∼

q2n∫

Q2
0

dk2T
k2
T

αs =

= αsln

(
q2n
Q2

0

)

P 2
1 = P 2

2 = 0, 2P1P2 = S � Λ2
QCD

q0 = x0P1 + q0T , q
2
0 = q2

0T = Q2
0 ∼ Λ2

QCD

...

qn = xP1 + qnT , q
2
n = q2

nT = Q2 � ΛQCD.

Collinear factorization for the amplitude
(kT → 0):

|Mn+1|2 =
1

k2
T

(αs
2π
Pij(z)|Mn|2 +O(k2

T )
)
,

⇒ n collinear radiations will give:
αns logn(Q2), which can be resummed
into PDF by solving DGLAP equation:

∂fi(x, µ
2)

∂ log(µ2)
=
αs

2π

1∫

x

dz

z
Pij(z)fj(x/z, µ

2)
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QCD at high energy in the Parton Reggeization Approach

Approach of the Collinear Parton Model in the fixed order.

Factorization formula of the CPM:

dσ =
∑

p1,p2

1∫

0

dx1

1∫

0

dx2fp1 (x1, µ
2
F )fp2 (x2, µ

2
F )dσ̂p1p2 (q1, q2, µF , µR),

where q1 = x1P1, q2 = x2P2, fp(x, µF ) – (integrated) PDF of the parton p in
proton, dσ̂ – hard-scattering cross-section.
For the sufficiently inclusive single-scale observables (e. g. dσ/dydQ2 in
Drell-Yan or F2(x,Q2) in DIS), it is proven (see e. g.[Collins, 2011]), that the
factorization-breaking terms are power-supressed (e. g. ∼ 1/Q2).
Now we can start to do perturbation theory. Possible problems:

PT is complicated, LO – tree level, NLO – 1-loop+IR cancellations between
real and virtual part, NNLO – 2-loops+ mutch more complicated IR
cancellations, ...
The PT expansion can be slow-convergent due to soft-gluon effects.
In the case of multiscale processes, the large logarithms of the scale ratios
come in – αs log(µ1/µ2).
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QCD at high energy in the Parton Reggeization Approach

Light-cone decomposition.

Let’s introduce the Sudakov (or light-cone) notation. The protons are flying along
the z-axis. For any 4-vector q:

qµ =
1

2
(q+n−µ + q−n+

µ ) + qTµ,

where n+ = 2P2√
S
, n− = 2P1√

S
, n+n− = 2, q± = n±q = q0 ± q3, qTn± = 0, and

∀ q, k:
qk =

1

2
(q+k− + q−k+)− qTkT , q

2 = q+q− − q2
T .

Rapidity – natural parameter for boosts along the z-axis:

y =
1

2
log

(
q+

q−

)
,

is closely related to pseudorapidity η = − log tan(θ/2). For massless particle:

η = y.
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QCD at high energy in the Parton Reggeization Approach

TMD factorization

For the multiscale processes, like the Drell-Yan dσ/dQ2dpT , the large log
corrections of the form αs log(p2

T /Q
2) are accumulated for Λ2

QCD � p2
T � Q2.

For this kind of processes, the TMD-factorization theorem is proven in all orders
(see e. g. [Collins, 2011]):

dσ =

∫
dx1dx2

∫
d2qT1F (x1,q

2
T1, µ

2
F )F (x2, (pT − qT1)2, µ2

F )Clow pT (x1, x2) +

+

∫
dx1dx2f(x1, µ

2
F )f(x2, µ

2
F )Chigh pT (x1, x2) + power corrections,

where F -TMD PDF where new log corrections are absorbed to. The
hard-scattering coefficients Clow pT and Chigh pT are free from large logarithms,
do not depend on qT , and calculable in the PT. Regions of p2

T < Q2 and
p2
T > Q2 are treated separately. The region of high pT can be taken into account

only order by order in PT.
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QCD at high energy in the Parton Reggeization Approach

TMD factorization

TMD-fatorization resums the collinear radiations with qT � µ into TMD PDF,
exploiting the collinear factorization for amplitudes, and resummation of the
Sudakov double logs αs log2(p2

T /Q
2).

Momentum-flow diagram:

P1

P2

(q+1 q−1 qT1)

pT ; y

(q+2 q−2 qT2)





Y

T
M

D
log

qT

q+

log
q-

q+

Y
�

0

Y
<

0

Y
>

0

1qT < Μ qT > Μ

Y = const⇒ qT1q
−
1 = const,

Y � 1⇒ q−1 � q+
1 .
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QCD at high energy in the Parton Reggeization Approach

Standard kT -factorization

Standard kT -factorization[Gribov et. al. 1983; Collins et. al. 1991; Catani et. al.
1991] uses the Reggeization of the QCD amplitudes, to factorize the effect of the
radiadiations with arbitrary qT , but highly separated in rapidity from the hard
subprocess into unintegrated PDF (unPDF).

Momentum-flow diagram:

P1

P2

(q+1 q−1 qT1)

pT ; y

(q+2 q−2 qT2)





Y

k
T

log
qT

q+

log
q-

q+

Y
�

0

Y
<

0

Y
>

0

1qT < Μ qT > Μ

Y = const⇒ qT1q
−
1 = const,

Y � 1⇒ q−1 � q+
1 .
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QCD at high energy in the Parton Reggeization Approach

Overlap of the TMD and factorization

Two approaches are complementary, but at high qT ∼ q+, the dependence of the
amplitude on the transverse momentum of the parton can not be neglected. This
dependence can be taken into account in a gauge invariant way, using the theory
of parton Reggeization.

Momentum-flow diagram:

P1

P2

(q+1 q−1 qT1)

pT ; y

(q+2 q−2 qT2)





Y

T
M

DkT
log

qT

q+

log
q-

q+

Y
�

0

Y
<

0

Y
>

0

1qT < Μ qT > Μ

Y = const⇒ qT1q
−
1 = const,

Y � 1⇒ q−1 � q+
1 .
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QCD at high energy in the Parton Reggeization Approach

Parton Reggeization Approach

PRA uses the gauge-invariant, transverse-momentum dependent partonic
amplitudes, which are equivalent to the CPM amplitudes in the collinear limit
together with unPDFs taking into account both DGLAP effects at small qT and
high qT tail from the rapidity-ordered emissions.

Momentum-flow diagram:

P1

P2

(q+1 q−1 qT1)

pT ; y

(q+2 q−2 qT2)





Y

PRA
log

qT

q+

log
q-

q+

Y
�

0

Y
<

0

Y
>

0

1qT < Μ qT > Μ

Y = const⇒ qT1q
−
1 = const,

Y � 1⇒ q−1 � q+
1 .
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QCD at high energy in the Parton Reggeization Approach

Parton Reggeization Approach

Effects of the rapidity-ordered emissions, proportionsl to αsY are taken into
account in the unPDF. The exponentially-supressed effects ∼ e−|Y | should be
taken order by order of PT in the hard subprocess.

Momentum-flow diagram:

P1

P2

(q+1 q−1 qT1)

pT ; y

(q+2 q−2 qT2)





Y

unPDF

Hard
Process

log
qT

q+

log
q-

q+

Y
�

0

Y
<

0

Y
>

0

1qT < Μ qT > Μ

Y = const⇒ qT1q
−
1 = const,

Y � 1⇒ q−1 � q+
1 .
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QCD at high energy in the Parton Reggeization Approach

Gauge-invariant amplitudes for the kT -factorization.

In QCD, off-shell Green functions are not gauge-invariant, in general, so the
separation of the contributions between hard subprocess and unPDF seems to be
ill-defined.
The Reggeization of the amplitudes in QCD solves this problem. In present time
three main approaches to generate the gauge-invariant amplitudes for
kT -factorization are proposed, which are related with Reggeization in one or
another way:

The old kT -factorization prescription for gluons (εµ(q) =
q
µ
T
|qT | ). This

prescription gives the result for g?g? → qq̄ amplitude, coinsiding with
RR→ qq̄ amplitude in PRA, constructed with the use of Lipatov vertex.
The parton Reggeization approach (PRA).
Methods based on the extraction of the multi-Regge asymptotics of the
amplitudes in the spinor-helicity representation [van Hameren et. al., 2013].
This metod is equvivalent to the PRA at tree level.
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QCD at high energy in the Parton Reggeization Approach

Example: Reggeization in φ3-model.

Let’s consider the amplitude of the process φφ→ φφ in the limit s→∞, t-fixed
(Regge limit). The scaling of the tree-level diagrams is obvious:

∼ 1

s
, ∼ 1

4m2 − t− s ∼
1

s
, ∼ 1

t

Leading loop corrections:

∑

n

=
g2

t

∑

n

1

n!
ωn(t) logn(s) =

g2

t
sω(t),

where ω(t)– Regge trajectory [Landshoff, Olive, Polkinghorne, 1966]. Naively, in
QCD the same power-counting is possible:

∼ 1

s
, ∼ 1

s
, ∼ 1

t
,

But the contribution of different diagrams is not gauge-invariant.
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QCD at high energy in the Parton Reggeization Approach

Reggeization of amplitudes in QCD.

PRA is based on the Reggeization of amplitudes in gauge theories (QED, QCD,
Gravity). The high energy asymptotics of the 2→ 2 + n amplitude is dominated
by the diagram with t-channel exchange of the effective (Reggeized) particle and
Multi-Regge (MRK) or Quasi-Multi-Regge Kinematics (QMRK) of final state.

s





P2

P1 P ′
1

t1 ↓
k

t2 ↓

P ′
2

B

A

B′

C

A′PPR

RRP

PPR





s1





s2

In the limit s→∞, s1,2 →∞, −t1 � s1,
−t2 � s2 (MRK limit), 2→ 3 amplitude reads:

AA′B′CAB = γR1
A′A

(
s1

s0

)ω(t1) 1

t1
×

×ΓCR1R2
(q1, q2)× 1

t2

(
s2

s0

)ω(t2)

γR2
B′B

ΓCR1R2
(q1, q2) - RRP effective production vertex,

γR
A′A - PPR effective scattering vertex,

ω(t) - Regge trajectory.
Three approaches to obtain this asymptotics:

Direct study of the MRK limit of the amplitudes (see examples below).
BFKL-approach (Unitarity, renormalizability and gauge invariance), see e. g.
[Ioffe, Fadin, Lipatov, 2010].
Effective action approach [Lipatov, 1995].
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QCD at high energy in the Parton Reggeization Approach

Example: derivation of the Reggeized gluon propagator.

The propagator of the Reggeized gluon should be universal, i. e. should not
depend on the type of scattered partons. Let’s consider the amplitude for the
process qq′ → qq′:

M(q(p1)q′(p2)→ q(p′1)q′(p′2)) = g2
s

(
ū(p′1)Taγµu(p1)

) gµν
t

(
ū(p′2)Taγνu(p2)

)
,

The metric tensor can be split into the longitudinal and transversal parts:

gµν =
1

2
(n+
µ n
−
ν + n−µ n

+
ν ) + g⊥µν ,

so that the amplitude converts into the sum of two termsM =M‖ +M⊥. In the
Regge limit (s→∞, t-fixed), p′1 ' p1, p′2 ' p2 holds. Using this approximations,
we obtain:

M‖ = g2
s

(
ū(p′1)Ta

n̂+

√
2
u(p1)

)
1

t

(
ū(p′2)Ta

n̂−√
2
u(p2)

)
.

By means of standard techniques, it is easy to show, that, in the Regge limit:

|M‖|2 ∼ s2

t2
, |M⊥|2 → 0,

so onlyM‖ gives the contribution to the amplitude, which is not decreasing with
energy.
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QCD at high energy in the Parton Reggeization Approach

Example: derivation of the Reggeized gluon propagator.

We have obtained, that:

M = g2
s

(
ū(p′1)Ta

n̂+

√
2
u(p1)

)
1

t

(
ū(p′2)Ta

n̂−√
2
u(p2)

)
+O

(
1√
s

)
.

From this result it is easy to understand, that Reggeized gluon is scalar particle
in the 8-representation of SUc(3), which is coupled with quarks, carrying large p±
momentum components via the effective vertices

γa∓ = gsT
a n̂
±
√

2
.

The study of the Regge limit of the processes qq → qq, qq̄ → qq̄, qg → qg, gg → gg
supports the self-consistency of the gluon Reggeization hypotesis at tree level,
and allows one to derive the ggR coupling (all momenta are incoming):

γabcµν∓(k1, k2) = gsf
abc

(
2gµνk

±
1 + (2k2 + k1)µn

±
ν − (2k1 + k2)νn

±
µ −

2k1k2

k±1
n±µ n

±
ν

)
,

which happens to obey the Slavnov-Taylor identity:

kµ1 ε
ν(k2)γabcµν∓(k1, k2) = εµ(k1)kν2γ

abc
µν∓(k1, k2) = 0.
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QCD at high energy in the Parton Reggeization Approach

Example: derivation of the Fadin-Lipatov vertex.

Now we will verify the gluon Reggeization in the Multi-Regge Kinematics, by
considering the MRK limit of the process

q(p1)q′(p2)→ q(p′1)g(k)q′(p′2)

First, let’s consider the 3g-vertex contribution. Straightforwardly applying the
Feynman rules, momentum conservation and Dirac equation we get:

M3g =

p2

p1

p′2

q2 ↓ k;µ; a

q1 ↓

p′1

=
g3
sf
cab

q2
1q

2
2

(
ū(p′1)T cγνu(p1)

) (
ū(p′2)T bγρu(p2)

)
×

× [−gνρ(q1 + q2)µ + 2q1ρgνµ + 2q2νgρµ] ε∗µa (k)
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QCD at high energy in the Parton Reggeization Approach

Example: derivation of the Fadin-Lipatov vertex.

In the MRK limit, we can make the substitutions:

gµν →
1

2
(n+
µ n
−
ν + n−µ n

+
ν ), q1ρ →

q+
1

2
n−ρ , q2ν →

q−2
2
n+
ν ,

after which we get:

M3g =
g3
sf
cab

q2
1q

2
2

(
ū(p′1)T c

n̂+

√
2
u(p1)

)(
ū(p′2)T b

n̂−√
2
u(p2)

)
×

×
[
−(q1 + q2)µ + q+

1 n
−
µ + q−2 n

+
µ

]
ε∗µa (k)

The obtained result has the correct t-channel factorized form, but the “effective
vertex” in the square brackets is not gauge-invariant. Only the sum of t and
s-channel diagrams is gauge-invariant, so let’s consider the s-channel diagrams in
the MRK limit.
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QCD at high energy in the Parton Reggeization Approach

Example: derivation of the Fadin-Lipatov vertex.

The contribution of the s1 = (p′1 + k)2 channel has the form:

Ms1 =

p2

p1

p′2

k1 p′1

k

q2 ↓
+

p2

p1

p′2

k2 p′1

k

↓ q2
=
ig3
sq

2
1

q2
1q

2
2

(
ū(p′2)T bγρu(p2)

)
×

× gρν

(
ū(p′1)

[
1

k2
1

(γν k̂1γ
σ)T bTa +

1

k2
2

(γσ k̂2γ
ν)TaT b

]
u(p1)

)
gσµε

∗µ
a (k),

where k1 = p1 − k, k2 = p′1 + k. In the MRK limit one can make the substitutions:

γν k̂1γ
σ → −p̂′1γνγσ + 2(p′1)νγσ , γσ k̂2γ

ν → −γσγν p̂1 + 2(p1)νγσ

k2
1 → 2p′1q2, k

2
2 → −2p1q2, p

′
1,2 ' p1,2, gµν →

1

2
(n+
µ n
−
ν + n−µ n

+
ν ),

which after the application of the Dirac equation and the Lie-algebra identity[
Ta, T b

]
= −ifabcT c lead us to

Ms1 =
g3
sf
cab

q2
1q

2
2

(
ū(p′1)T c

n̂+

√
2
u(p1)

)(
ū(p′2)T b

n̂−√
2
u(p2)

)[
− q

2
1

q−2
n−µ

]
ε∗µa (k)
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QCD at high energy in the Parton Reggeization Approach

Example: derivation of the Fadin-Lipatov vertex.

Analogously, the MRK-limit for the s2-channel is:

Ms2 =
g3
sf
cab

q2
1q

2
2

(
ū(p′1)T c

n̂+

√
2
u(p1)

)(
ū(p′2)T b

n̂−√
2
u(p2)

)[
− q

2
2

q+
1

n+
µ

]
ε∗µa (k).

Collecting all results together we obtain the amplitude in the expected t-channel
factorized form:

M3g+Ms1+Ms2 =
(
ū(p′1)γc−u(p1)

) 1

q2
1

(
Γcab+µ−(q1, q2)ε∗µa (k)

) 1

q2
2

(
ū(p′2)γb+u(p2)

)
,

where the Fadin-Lipatov vertex has the form (q1-incoming, q2-outgoing):

Γcab+µ−(q1, q2) = gsf
cab

[
−(q1 + q2)µ + n−µ

(
q+
1 −

q2
1

q−2

)
+ n+

µ

(
q−2 −

q2
2

q+
1

)]
.

It is easy to see, that the Fadin-Lipatov vertex obeys the Slavnov-Taylor identity:

Γcab+µ−(q1, q2)(q1 − q2)µ = 0.

So the gluon Reggeization hypothesis is non-trivially checked in the MRK.
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QCD at high energy in the Parton Reggeization Approach

The field content of the effective theory.

To produce the amplitudes for the arbitrary QMRK processes, the effective-action
approach is very useful [Lipatov, 1995]. Light-cone coordinates and derivatives:

x± = n±x = x0 ± x3, ∂± = 2
∂

∂x∓

Lagrangian of the effective theory L = Lkin +
∑
y

(
LQCD + Lind

)
, vµ = vaµt

a,
[
ta, tb

]
= fabctc. The rapidity space is sliced into the subintervals, corresponding

to the groups of final-state particles, close in rapidity. Each subinterval in rapidity
(1� η � Y ) has it’s own set of QCD fields:

LQCD = −1

2
tr
[
G2
µν

]
, Gµν = ∂µvν − ∂νvµ + g [vµ, vν ] .

Different rapidity intervals communicate via the gauge invariant fields of
Reggeized gluons (A± = Aa±t

a) with the kinetic term:

Lkin = −∂µAa+∂µAa−,

and the kinematical constraint:

∂−A+ = ∂+A− = 0⇒

A+ has k− = 0 and A− has k+ = 0.
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QCD at high energy in the Parton Reggeization Approach

The effective action for high energy processes in QCD.

− + − +

Particles and Reggeons interact via induced interactions:

Lind = − tr





1

g
∂+


P exp


−

g

2

x−∫

−∞

dx′−v+(x′)





 · ∂σ∂σA−(x)+

+
1

g
∂−


P exp


−

g

2

x+∫

−∞

dx′+v−(x′)





 · ∂σ∂σA+(x)





Wilson lines generate the infinite chain of the induced vertices:

Lind = tr
{[
v+ − gv+∂

−1
+ v+ + g2v+∂

−1
+ v+∂

−1
+ v+ − ...

]
∂σ∂

σA−+

+
[
v− − gv−∂−1

− v− + g2v−∂−1
− v−∂−1

− v− − ...
]
∂σ∂

σA+

}
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QCD at high energy in the Parton Reggeization Approach

Feynman rules. Quarks, gluons and photons.

Feynman Rules for Reggeized gluons [Antonov, Cherednikov, Kuraev, Lipatov, 2005]
Feynman Rules for Reggeized quarks [Lipatov, Vyazovsky, 2001]

Initial state factors:

→ q

± =
q±

2
√
−q2

,

→ q

± = u(q‖).

Propagators (P̂± = 1
4 n̂

∓n̂±):

→ q

∓ ± = P̂±
iq̂

q2
,

→ q

∓ ± =
iq̂

q2
P̂±.

∓
= −igsT

an̂±,

q1 ±

q2 ∓

p
= −igsT

a

(
n̂± + 2

q̂1

q∓2

)
,

q1 ±

q2 ∓

p
= −2iegsT

a
q̂1n

∓
µ

p∓q∓2
,

q1 ±

q2 ∓

p
= −ie

(
γµ + q̂1

n∓
µ

p∓
+ q̂2

n±
µ

p±

)
,

q1 ±
p

= −ie

(
γµ + q̂1

n∓
µ

p∓

)
,

q1 ±
p1

p2

= −ie2q̂1
n∓
µ1
n∓
µ2

p∓1 p
∓
2

.

q1 ±

q2 ∓
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= ie2
(
q̂2

n±
µ1
n±
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p±1 p
±
2

− q̂1
n∓
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p∓1 p
∓
2

)
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q1 ±

q2 ∓
p1

p2
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= −ie3
(
q̂2

n±
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n±
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n±
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p±1 p
±
2 p

±
3

+ q̂1
n∓
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n∓
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n∓
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∓
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∓
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)
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= −2ie2gsT
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q̂1n
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n∓
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∓
2 q

∓
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Factorization of the cross-section.

Factorization:

P1

P2

x1; t1

x2; t2

Collinear limit holds for the amplitude:
∫

dφ1dφ2

(2π)2
lim

t1,2→0
|M|2PRA = |M|2CPM

kT -factorization formula:

dσ =

∫
d2qT1

π

∫
dx1

x1
Φ(x1, t1, µF )×

×
∫

d2qT2

π

∫
dx2

x2
Φ(x2, t2, µF )dσ̂PRA

Where Φ - Unintegrated PDFs. The factorization
is known to hold in the LLA (αs log(1/x))
[BFKL, 1978], and NLLA (α2

s log(1/x)) [Fadin,
Lipatov, 1998; Camici, Ciafaloni, 1998; Bartels,
et. al., 2006].
Normalization of the unPDF:

µ2∫
dtΦ(x, t, µ2) = xf(x, µ2),

where f(x, µ2) - collinear PDF.
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The Kimber-Martin-Ryskin unPDF.

In the present numerical computations we use the modified KMR unPDF from
[Martin , Ryskin, Watt 2010].
KMR prescription to obtain unintegrated PDF from collinear one is based on the
mechanism of last step parton kT−dependent radiation and the assumption of
strong angular ordering:

Φq(x, k
2
T , µ

2) =
1

k2
T

1−∆∫

x

dzTq(q
2, µ2)

αs(q2)

(2π)

[
Pqg(z)fg

(x
z
, q2
)

+ Pqq(z)fq
(x
z
, q2
)]
,

where Pqg(z), Pqq(z)- LO DGLAP splitting functions, Tq(k2, µ2)- Sudakov
formfactor:

Tq(k
2, µ2) = exp




−

µ2∫

k2

dq2
T

q2
T

αs(q2
T )

2π

∑

a′

1−∆∫

0

Pqa′ (z
′)dz′





where ∆ = kT
µ+kT

ensures the rapidity ordering of the last emission and
particles produced in the hard subprocess, and q2 = k2

T /(1− z).
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Selected results in LO PRA.

1 γ + p→ J/Ψ(Υ)X at HERA
2 pp→ J/Ψ(Υ)X at Tevatron and the LHC
3 DY pair production
4 Single jet and prompt photon production
5 D(B)-meson production
6 b−jet production
7 Pair correlations in PRA, see talk by A. Shipilova
8 Diphoton production in NLO* PRA, see talk by M. Nefedov
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γ + p→ J/Ψ(Υ)X at HERA
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pp→ J/Ψ(Υ)X at Tevatron and the LHC

B. A. Kniehl, V. A. Saleev and D. V. Vasin, “Bottomonium production in the
Regge limit of QCD,” Phys. Rev. D 74, 014024 (2006) [hep-ph/0607254].
B. A. Kniehl, D. V. Vasin and V. A. Saleev, “Charmonium production at high
energy in the kT -factorization approach,” Phys. Rev. D 73, 074022 (2006)
[hep-ph/0602179].
V. A. Saleev, M. A. Nefedov and A. V. Shipilova, “Prompt J/psi production
in the Regge limit of QCD: From Tevatron to LHC,” Phys. Rev. D 85, 074013
(2012) [arXiv:1201.3464 [hep-ph]].
M. Nefedov, V. Saleev and A. Shipilova, “Prompt Υ(nS) production at the
LHC in the Regge limit of QCD,” Phys. Rev. D 88, no. 1, 014003 (2013)
[arXiv:1305.7310 [hep-ph]].

It was shown that using LO PRA and NRQCD we can describe the
pT -spectra both for S and P -wave states. The situation with
polarization is discussed in [hep-ph/1410.6421]. Both Color-Singlet and
Color-Octet contributions are required.
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Υ(nS) production at the LHC (
√
S = 7 TeV).
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Left panel – ATLAS data (fit), right panel – LHCb data (prediction). Dashed line
– CS contribution, dash-dotted line – CO contribution, unPDF – LO KMR.
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χcJ -production and polarization observables for ψ(2S) and Υ(3S).
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Single jet and prompt-photon production at HERA, Tevatron and
the LHC

V. A. Saleev, “Prompt photon photoproduction at HERA within the
framework of the quark Reggeization hypothesis,” Phys. Rev. D 78, 114031
(2008) [arXiv:0812.0946 [hep-ph]].
V. A. Saleev, “Deep inelastic scattering and prompt photon production within
the framework of quark Reggeization hypothesis,” Phys. Rev. D 78, 034033
(2008) [arXiv:0807.1587 [hep-ph]].
B. A. Kniehl, V. A. Saleev, A. V. Shipilova and E. V. Yatsenko, “Single jet
and prompt-photon inclusive production with multi-Regge kinematics: From
Tevatron to LHC,” Phys. Rev. D 84, 074017 (2011) [arXiv:1107.1462
[hep-ph]].

We have studied single jet and
prompt-photon inclusive
production, at LO PRA, in which
they are dominated by 2→ 1
partonic subprocesses initiated by
Reggeized gluons and quarks,
respectively. Despite the great
simplicity of our analytic
expressions, we found excellent
agreement with single jet
[CDF,ATLAS] and prompt-photon
[ZEUS,CDF,ATLAS].

C
γ/g,µ

QQ (q1, q2) =

C
γ/g
1

[
γµ − q̂1 (n−)µ

q−2
− q̂2 (n+)µ

q+1

]
,

∣∣M
(
Q+Q → γ/g

)∣∣2 =

C
γ/g
2 (Q2 + t1 + t2),

|M(R+R→ g)|2 =
3
2
παs(t1 + t2 + 2

√
t1t2 cosφ12).
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Single jet and prompt photon at the LHC.

200 400 600100 300 500
pT, GeV

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

10
11

10
12

10
13

d
2
�
�d

p
T
d
y
(p

p
�

je
t 
X

),
 p

b
/G

e
V

1

2

3

4

5

10 10020 40 60 80
pT�, GeV

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

d
�

(p
p
�
�
X

)�
d
p

T
�
, 
n
b

/G
e
V 1

2

3

34 / 43



QCD at high energy in the Parton Reggeization Approach

Drell-Yan pair production at Tevatron and the LHC

M. A. Nefedov, N. N. Nikolaev and V. A. Saleev, “Drell-Yan lepton pair
production at high energies in the Parton Reggeization Approach,” Phys.
Rev. D 87, no. 1, 014022 (2013) [arXiv:1211.5539 [hep-ph]].

wPRAµν = x1x2

[
−Sgµν + 2(Pµ1 P

ν
2 + Pµ2 P

ν
1 )

(2x1x2S −Q2 − t1 − t2)

x1x2S
+

+
2

x2
(qµ1 P

ν
1 + qν1P

µ
1 ) +

2

x1
(qµ2 P

ν
2 + qν2P

µ
2 ) +

+
4(t1 − x1x2S)

Sx2
2

Pµ1 P
ν
1 +

4(t2 − x1x2S)

Sx2
1

Pµ2 P
ν
2

]
.

The LO PRA predictions provide an adequate numerical description of
lepton pair distributions on the invariant mass (Q), lepton pair
transverse momentum (qT ) and longitudinal scaling variable (xF ) as
well as lepton pair angular distributions at the SPS, Tevatron and LHC
Colliders.
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Polarization observables in Drell-Yan (
√
S = 39GeV ).

The data are from NuSea Collaboration (Fermilab).
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D(B)-meson production at Tevatron and the LHC

A. V. Karpishkov, M. A. Nefedov, V. A. Saleev and A. V. Shipilova, “B-meson
production in the Parton Reggeization Approach at Tevatron and the LHC,”
Int. J. Mod. Phys. A 30, no. 04n05, 1550023 (2015) [arXiv:1411.7672
[hep-ph]].
A. V. Karpishkov, M. A. Nefedov, V. A. Saleev and A. V. Shipilova, “Open
charm production in the parton Reggeization approach: Tevatron and the
LHC,” Phys. Rev. D 91, no. 5, 054009 (2015)
B. A. Kniehl, A. V. Shipilova and V. A. Saleev, “Open charm production at
high energies and the quark Reggeization hypothesis,” Phys. Rev. D 79,
034007 (2009) [arXiv:0812.3376 [hep-ph]].

It was shown that at high pT region the gluon into the final heavy
meson fragmentation in R+R→ g with g → D(B) is dominating
production mechanism instead of heavy quark fragmentation in
R+R→ c(b) + c̄(b̄) with c(b)→ D(B)
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D and B mesons at the LHC. ALICE data.
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b-jet production at Tevatron and the LHC

V. A. Saleev and A. V. Shipilova, “Inclusive b-jet and bb̄-dijet production at
the LHC via Reggeized gluons,” Phys. Rev. D 86, 034032 (2012)
[arXiv:1201.4640 [hep-ph]].
B. A. Kniehl, V. A. Saleev and A. V. Shipilova, “Inclusive b and b anti-b
production with quasi-multi-Regge kinematics at the Tevatron,” Phys. Rev. D
81, 094010 (2010) [arXiv:1003.0346 [hep-ph]].

It was shown that at high pT region
the gluon into the final heavy
meson fragmentation in R+R→ g
with g → b is dominating
production mechanism instead of
direct b−quark production in
R+R→ b+ b̄.
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Jet and prompt-photon pair production.

A. Shipilova, "Pair correlations in particle and jet production at the LHC in
the parton Reggeization approach"
M. Nefedov, "Prompt photon pair production at the Tevatron and LHC in
the Parton Reggeization Approach"
B. A. Kniehl, M. A. Nefedov and V. A. Saleev, “Prompt-photon plus jet
associated photoproduction at HERA in the parton Reggeization approach,”
Phys. Rev. D 89, no. 11, 114016 (2014) [arXiv:1404.3513 [hep-ph]]
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Selected results in PRA. Prompt photon + jet photoproduction at
HERA (

√
Sep = 318.7 GeV).
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Conclusions.

MRK and QMRK dominate in high energy particle production,
DGLAP+BFKL
kT−factorization is proven in Leading and Next-to-Leadind-log(1/x)
approximation ⇒ NLO calcualtions are possible.
Gluons and quarks in t−channel are Reggeized at high energy
kT−factorization formalism + Reggeized amplitudes = Parton Reggeization
Approach
PRA is only one way to correct inclusion of NLO corrections in
kT−factorization
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Thank you for your attention!
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