Higgs boson results from ATLAS

Yanping Huang (DESY)

On behalf of the ATLAS collaboration

QFTHEP 2015 June25

Higgs particle

- The Higgs particle was the missing corner stone of the SM and is responsible for the masses of elementary particles.
- ***** Born on 4th of July 2012:
 - Higgs-like boson at ~125GeV
 - 5.9σ @ATLAS, 5σ @CMS PLB, 716, 2012)
- October 2013: Nobel prize to Englert and Higgs
- A new era of particle physics measure the properties of the new particle:
 - ★ mass, couplings and differential cross-sections, spin, CP, width …

95%(90%) of recorded (delivered) luminosity was good for physics analysis

Challenges with high luminosity

Higgs production at the LHC

~500K Higgs bosons produced in the ATLAS detector

Higgs production at the LHC

Higgs production at the LHC

~500K Higgs bosons produced

• only one in $\sim 10^{10}$ events will be a Higgs boson.

Higgs decays

Higgs decays

Higgs field serves as the source of mass generation in the fermion sector through the Yukawa interaction.

Panorama of Higgs analysis

					– – <i>H</i>			
		$VBF_{q \qquad q \qquad$	$g \xrightarrow{q} (c) $	$\begin{array}{c} & & & \\ & &$	^q Mass _t	СР	X-sec.	Width
γγ		$g \xrightarrow{g} (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
ZZ*(41)	(c) (c)	(d) (d)	\checkmark	\checkmark	√	\checkmark	\checkmark	\checkmark
WW*(lvlv)	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
ττ	\checkmark	\checkmark	\checkmark	\checkmark				
bb			\checkmark	\checkmark				
Ζγ	\checkmark							
μμ	\checkmark							
invisible	\checkmark		\checkmark					

* Experimental Strategy:

- + Investigate a large number of final states with dedicated event categories to separate different production modes (and to increase overall significance)
- Probe different kinds of the Higgs properties.

Higgs property measurement

- Higgs Mass Measurement
- Coupling measurement
- Higgs invisible search
- Off-Shell behaviour
- Higgs Boson quantum numbers
- Fiducial and Differential cross section measurements

Higgs Mass Measurement

- The free and fundamental parameter of the SM Higgs sector
- Linked to Higgs properties, including the potential self-coupling.

$H \rightarrow YY$

Run Number: 204769, Event Number: 24947130

Date: 2012-06-10 08:17:12 UTC

Higgs Mass

- Statistics dominated measurement.
- Systematic uncertainties dominated by energy/momentum calibration of photons (H $\rightarrow\gamma\gamma$) and electrons/muons(H \rightarrow ZZ*(41))
- ✦ Compatibility of the four measurement masses O(10%)
- Individual measurement compatible with $\sim 2\sigma$

First ATLAS and CMS Combination: m_H=125.09±0.21(stat.)± 0.11(sys.)GeV

Higgs Boson Couplings

- + Predicted for all SM particles for a given Higgs mass.
- + Determine Higgs boson phenomenology & experimental signatures.
- **+** Sensitive to BSM phenomena coupling to Higgs sector.

- * A straightforward consistency/deviation strategy is based on signal strength measurements in different production and decay modes:
 - The signal strength (μ) is defined as the ratio between the measured Higgs yield and the SM prediction.

$$\mu = \frac{N^{measured}}{N^{SM}} = \frac{\sigma \times BR}{(\sigma \times BR)_{SM}}$$

$H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^*(4l)$

$H \rightarrow WW^*(2l2v)$

- obs.(exp.) significance: 6.1σ(5.8σ)
- Evidence for VBF with obs.(exp.) significance of 3.2σ(2.7σ): Crucial to measure VH couplings in tree level processes
- Systematic (in particular theoretical uncertainty) play a very important role

	Observed $\mu = 1.09$			
Source	Er:	ror _	Plot of error (scaled by 100)	
Data statistics	0.16	0.15		
Signal regions	0.12	0.12		
Profiled control regions	0.10	0.10		
Profiled signal regions	-	-	-	
MC statistics	0.04	0.04	+	
Theoretical systematics	0.15	0.12		
Experimental systematics	0.07	0.06	+-	
Integrated luminosity	0.03	0.03	+	
Total	0.23	0.21		
		-	-30-15 0 15 30	

$$\mu = 1.09^{+0.23}_{-0.21} = 1.09^{+0.16}_{-0.15} (\text{stat.})^{+0.17}_{-0.14} (\text{syst.})$$

$$\mu_{ggF} = 1.02^{+0.29}_{-0.26} = 1.02 \pm 0.19 (\text{stat.})^{+0.22}_{-0.18} (\text{syst.})$$

$$\mu_{VBF} = 1.27^{+0.53}_{-0.45} = 1.27^{+0.44}_{-0.40} (\text{stat.})^{+0.30}_{-0.21} (\text{syst.})$$

- * $H \rightarrow \tau \tau$: include all τ decays
 - obs.(exp.) significance: $4.5\sigma(3.4\sigma)$
 - + Evidence for Higgs-Yukawa coupling as predicted in the SM.

$H \longrightarrow bb^{Main production V(II)H}$

- ★ H→bb: due to overwhelming multi-jet backgrounds, need additional signature from exclusive production modes.
 - Signal: (W/Z)H with $H \rightarrow bb$ and V leptonic decay.
 - + obs.(exp.) significance: $1.4\sigma(2.6\sigma)$

Look for an excess in m_{bb}.

Searches for Rare Higgs Boson Production & Decays

Searches for rare production modes

• ttH (direct access to top-Higgs Yukawa coupling)

* Searches for rare SM decays

- $H \rightarrow \mu \mu$ (probe 2nd generation lepton coupling)
- $H \rightarrow Z\gamma$ (probe loop decay)

ttH Searches

$H \rightarrow \mu \mu$ and $H \rightarrow Z\gamma$ Searches

95% CL upper limit on signal strength (µ)				
	observed	expected		
H→μμ	7.0	7.4		
H→Zγ	11	9		

- Searches are statistically limited
- Clear sign that Higgs boson does not couple universally to leptons $(260 \times SM \text{ for } H \rightarrow \mu\mu \text{ given the})$ observed evidence of $H \rightarrow \tau \tau$)

150

Summary of signal strength measurement

- All measurements of signal strength consistent with 1:
 - combined precision ~13%, theory uncertainty non-negligible

25

ATLAS-CONF-2015-007

Summary of signal strength measurement

Re-parametrisation with the ratios to ggF(production) and WW(decay):

$R_{i/\text{ggF}} = \frac{\sigma_i / \sigma_{\text{ggF}}}{\left[\sigma_i / \sigma_{\text{ggF}}\right]_{\text{SM}}}$	$\rho_{f/WW^*} = \frac{\mathrm{BR}_f/\mathrm{BR}_{WW^*}}{\left[\mathrm{BR}_f/\mathrm{BR}_{WW^*}\right]_{\mathrm{SM}}}.$

$\mu_{ m ggF}^{WW}$	7*	$1.15^{+0.28}_{-0.24}$				
Ratio of	Ratio of Best-fit		Significance (σ)			
cross sections	value	Observed	Expected			
$R_{\rm VBF/ggF}$	$1.00^{+0.46}_{-0.34}$	4.3	3.8			
$R_{VH/ggF}$	$1.33^{+0.94}_{-0.68}$	2.6	3.1			
$R_{ttH/ggF}$	$1.90^{+1.12}_{-0.86}$	2.4	1.5			

26

- All measurements of signal strength consistent with 1:
 - combined precision ~13%, theory uncertainty non-negligible

Higgs boson coupling scale factors.

[•] Allow BSM particles in the loops or resolve the loop assuming SM field only

Scalar coupling deviations framework

Production	Loops	Interference	Expression in terms of fundamental coupling strengths		
$\sigma(ggF)$	\checkmark	b-t	$\kappa_g^2 \sim$	$1.06 \cdot \kappa_t^2 + 0.01 \cdot \kappa_b^2 - 0.07 \cdot \kappa_t \kappa_b$	
$\sigma(\text{VBF})$	-	-	\sim	$0.74 \cdot \kappa_W^2 + 0.26 \cdot \kappa_Z^2$	
$\sigma(WH)$	-	-	\sim	κ_{W}^{2}	
$\sigma(q\bar{q}\to ZH)$	-	-	\sim	κ_Z^2	
$\sigma(gg \to ZH)$	\checkmark	Z - t	$\kappa^2_{ggZH} \sim$	$2.27\cdot\kappa_Z^2+0.37\cdot\kappa_t^2-1.64\cdot\kappa_Z\kappa_t$	
$\sigma(bbH)$	-	-	~	κ_b^2	
$\sigma(ttH)$	-	-	\sim	κ_t^2	
$\sigma(gb \to WtH)$	-	W - t	\sim	$1.84 \cdot \kappa_t^2 + 1.57 \cdot \kappa_W^2 - 2.41 \cdot \kappa_t \kappa_W$	
$\sigma(qb \to tHq')$	-	W - t	\sim	$3.4\cdot\kappa_t^2+3.56\cdot\kappa_W^2-5.96\cdot\kappa_t\kappa_W$	
Partial decay width					
$\Gamma_{b\bar{b}}$	-	-	~	κ_b^2	
Γ_{WW}	-	-	\sim	κ_{W}^{2}	
Γ_{ZZ}	-	-	\sim	κ_Z^2	
$\Gamma_{ au au}$	-	-	\sim	κ_{τ}^2	
$\Gamma_{\mu\mu}$	-	-	\sim	κ_{μ}^2	
$\Gamma_{\gamma\gamma}$	\checkmark	W - t	$\kappa_{\gamma}^2 \sim$	$1.59 \cdot \kappa_W^2 + 0.07 \cdot \kappa_t^2 - 0.66 \cdot \kappa_W \kappa_t$	
$\Gamma_{Z\gamma}$	\checkmark	W - t	$\kappa_{Z\gamma}^2 \sim$	$1.12 \cdot \kappa_W^2 + 0.00035 \cdot \kappa_t^2 - 0.12 \cdot \kappa_W \kappa_t$	
Total decay width					
		W - t		$0.57 \cdot \kappa_{\rm b}^2 + 0.22 \cdot \kappa_{\rm W}^2 + 0.09 \cdot \kappa_{\rm g}^2 +$	
$\Gamma_{ m H}$	\checkmark		$\kappa_{\rm H}^2 \sim$	$0.06 \cdot \kappa_{\tau}^2 + 0.03 \cdot \kappa_Z^2 + 0.03 \cdot \kappa_c^2 +$	
		D - t	11	$0.0023 \cdot \kappa_{\gamma}^2 + 0.0016 \cdot \kappa_{Z\gamma}^2 + 0.00022 \cdot \kappa_{\mu}^2$	

Input analyses to the combinations: $H \rightarrow \gamma \gamma$, ZZ, WW, $\tau \tau$, bb, $\mu \mu$, Z γ and constraint on ttH and off-shell Higgs productions

Higgs Boson Coupling measurement

- Scaling coupling to fermions (κ_F) and vector $bosons(\kappa_V)$:
 - All decay channels converging around SM expectation.
- Other benchmarks models:
 - different options on the loops and decays
 - custodial symmetry of W and Z
 - coupling to up/down-type fermions
 - coupling ratios

1.05 1.1 1.15 12 **Couplings very consistent with SM predictions** 29

Higgs Boson Coupling measurement

 Most general benchmark scenario with the consideration of all potential κ-scale factors:

Measurements very compatible with SM prediction

Invisible Higgs Searches

Assuming SM Higgs width, it can be reinterpreted as the constraints on off-shell and on-shell coupling ratio µ^{gg}_{off shell}/µ^{gg}_{onshell}

Off-Shell signal strength and the Higgs Boson Width Limit

- ★ Assuming the unknown gg→VV k-factor is equal to signal k-factor:
 - $\mu_{offshell} < 6.2 (8.1) obs(exp) at 95\%CL$
 - $\Gamma_{\rm H} < 22.7 (33.0) \text{MeV obs(exp) at } 95\% \text{CL}$

- Direct Higgs width measurement at 95%CL:
 - $H \rightarrow \gamma \gamma$: $\Gamma_{\rm H} < 5.0(6.2) \, {\rm GeV}$
 - H \rightarrow ZZ: $\Gamma_{\rm H}$ <2.6(6.2)GeV

- All alternative hypothesises excluded to more than 99% CL: non-SM spin-0 models and spin-2 models with universal and non-universal coupling to fermions and bosons.
- Tensor structure of the HVV interaction in the spin-0 hypothesis is investigated.
- Higgs boson very SM-like: small non-SM admixture not yet excluded!

Fiducial and Differential cross section measurement

- Measurement designed as model independent as possible.
- * Direct comparison with theoretical predictions at particle level.
- * A wide and diverse range of physical phenomena to be probed:
 - Higgs boson kinematics. Jet activity. VBF-sensitive variables. Spin-CP sensitive variables

35

The measurement are comparable to the prediction

Summary: What have we learned?

- Higgs mass determined to 0.2%
- Higgs signal strength ~1, determined to 15%
- Higgs couplings tested for many scenarios and assumptions (consistent with SM), the combination between ATLAS and CMS is coming soon.
- Many non-Spin-0 and CP-odd hypotheses excluded
- Differential cross-section measurement at 8TeV

Higgs boson is so far very consistent with SM predictions, but still statistically limited.

LHC -> HLHC/EL-LHC Plan

Prospect of Higgs Boson coupling

- Offer a comprehensive physics programme •
 - Expected to establish: $H \rightarrow bb$, ttH , $H \rightarrow \mu\mu$, $H \rightarrow Z\gamma$
 - 3000fb-1 offers physics significance better than 300fb-1 •
 - Theory uncertainties become dominant for many key processes •

 $\Delta \mu / \mu$

First Stable Beams

LHC Run2 is underway, more results to come very soon!

proton-proton collisions at 13 TeV

Run: 266904 Event: 9393006 2015-06-03 10:40:31 CEST