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Two Higgs doublet model — 2HDM

The 2HDM describes a system of two scalar isospinor fields ¢1, ¢> with
hypercharge Y = 1. The most general form of the 2HDM potential is

A py
V=51<¢§¢1)2 + 5@2@)2 + A3@1 ) @hdo) + Aa (@] p0) @he0)
A
+ 261692 + 2@ 606169 + A @hed 6162 + h.c.]

2 2 2
-l e - 220k - %@Q@Hh.c.]

Its coefficients (brawn are real, blue are complex) are restricted by
the requirement that the potential be positive at large quasiclassical
values of ¢; (positivity constraints). This potential is described by 14
real parameters



The model contains two doublets of scalar fields with identical quantum
numbers = it can be described either in terms of the original fields
$1, ¢o or in terms of fields ¢}, ¢5, which are obtained from ¢ by a
global unitary reparameterization transformation F
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with corresponding transformation of the parameters \;, — Ag. We
refer to these different choices as different RPa bases.
T his transformation is described by 3 angles 8, p, 7 and pg, the parameter
po don’t influence for coefficient
Model is described by 11 relevant parameters.



We develop a method for finding the minimal and a
comprehensive set of directly measurable quantities defining
the 2HDM and have built simple example of such set. We
call these quantities observables and call the chosen complete
set the basic set of observables. This basic set is subdivided
naturally into two subsets, defined below.

We have found simple explicit expressions for the parameters of
potential of the model via these observables (and non-physical
parameters, fixing RPa basis).

Fortunately, the obtained description appeared to be simple
enough.




Extrema of the potential satisfy the stationarity equations 8V/8¢i|¢1:<¢1>’¢2:<
0 (« = 1, 2). The most general solution that describes the SU(2) x

U(l)y — UQ1)gp symmetry breaking is expressed via two positive
numbers v; and the relative phase factor e’ as:
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v1 =vCOSB, wy=wvsSing, v= \/v%—l—v%.

The ground state of potential (the vacuum) is the extremum with
the lowest energy, and its vacuum expectation value (v.e.v.) is v =
246 GeV.

The fields ¢; are then decomposed into their v.e.v.'s and the quantized
component fields, their linear combinations describe Goldstone modes
G*, G, charged Higgses H* with mass M+ and neutral Higgses hi 5 3
with masses M 2 3



Relative couplings. We consider couplings of each neutral Higgs

boson to a fundamental particle P by g’ (P = {V(W, 2), f = q(t,b,¢,...), £(T, 1
and similar couplings of the standard Higgs boson of SM ggM. We use

the relative couplings
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Besides, we introduce dimensionless relative couplings:
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The neutrals hg generally have no definite CP parity. Couplings XX and
X;—L are real due to Hermiticity of Lagrangian, while other couplings
are generally complex.



Higgs basis
We analyze the model with known vacuum using the special RPA

transformed basis with v» = 0 the Higgs (or Georgi) basis. It is
obtained from mentioned basis with known v.e.v.’s by RPa transformation:
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(Here Fyp is obtained from Fgen by substitution § = 8,7 = p—¢&.
The phase factor eti/2 represents the remaining RPh freedom in the
choice of the Higgs basis that is, independence of the physical picture

from the choice of relative phase ¢;, the RPh phase.

Vise versa, any form of the potential can be obtained from the Higgs
basis form with the transformation, .7?]}%3 = Fgen(0 = =B, 7 = p+£)
with p — —p, po = —po. We do not fix in this definition the RPh phase
p and the irrelevant parameter pg.



The potential obtained can be rewritten in the form (capital letters
for fields and parameters in Higgs basis)
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In the Higgs basis, the decomposition of fields v.e.v. has simple form
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To arrive to the description in terms of physically observable fields,
one should start by substituting these expressions into the potential.

By choosing the unitarity gauge for the gauge fields, we omit the
Goldstone modes G% from now on.

Now the potential takes the form:
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The coefficients M;; form the neutral scalar mass matrix
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The physical neutral Higgs states h, are such superpositions of fields
n; that diagonalize this mass matrix:

. nin;
ha = Rym;y, 1 = Rﬁha :>Mz'j 22‘7

M2

— 2
Ty M;; = R,?’R?Ma :

10



The mixing matrix R is a real-valued orthogonal matrix determined

by the parameters of the mass matrix. It can be parameterized with
three Euler angles. One of them is responsible for rephasing transformation
of fields, i.e. it is irrelevant.

The trace of the mass matrix is invariant under orthogonal transformations.
Therefore v2 (A1 +Ng) =3, M2 — M3.

One of the advantages of the Higgs basis as compared to other
RPa bases is the fact that the elements of rotation matrix are
directly related to the relative couplings, which are, in principle,
measurable:
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The phases of quantities X2 W™, i.e. the ratios R%/R% cannot be
fixed because of the rephasing freedom of potential in the Higgs basis,
but their relative phases for different h, are determined unambiguously.
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The orthogonality of the mixing matrix means that its elements obey
a set of relations:
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Finally, one can read the mass matrix, written above, as expressions
of some A's via elements of the mass matrix and then, withto express
them via the masses of Higgs bosons and their couplings to gauge
bosons:

V2N = %;(ngMg L 02Ny = %:Mg—Mi—vz/\l;
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The observables entering into this equation form a first subset of the
basic set of observables. Couplings XCIL{+W_ are expressed via X}{. The

phase freedom in the definition of these couplings is reproduced as a
similar freedom in phases of Ag, Ag.
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The second subset of basic set form 3 triple Higgs couplings and one
quartic coupling.

Each triple Higgs vertex depends on Az, ReA7, ImA7, in addition to
the parameters of the first subset. The cubic interaction of neutral and
charged scalars can be written as vT; HT H " n;, with T; = (A3, ReA7, —ImA7),.
After transformation to physical states n, = Rgbha, we obtain the
corresponding couplings: g(HTH hy) = vRI'T;. This expression is easy
to solve for T; by inverting the rotation matrix:
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The parameter Ao can only be extracted from quartic couplings.
(Each quartic Higgs vertex depends on parameter Ao in addition to
parameters determined from mass terms and triple Higgs couplings).
We use for basic set the vertex HYH-HtYH~—. The HYTH-HTH~
vertex enters Lagrangian in a very simple form ?QH"‘H—H"‘H—, and

its observation offers the simplest way to measure As:

A =2g(HTH HTH).

15



Possible strong interaction in the Higgs sector.

The fact that free parameters of the potential naturally fall into three
very distinct categories, offers a new opportunity which was absent in
the SM. Before the Higgs discovery, the large coupling constant A was,
in principle, possible within SM. In this case, the Higgs boson would
be very heavy and wide, and it could not be seen as separate particle.
Instead, its dynamics would be governed by the strong interaction in
the Higgs sector, which would manifest itself in the form of resonances
in the WyWy, WrZr, Z;Z;, scattering in the 1-2 TeV energy range. In
the SM this opportunity is closed by the discovery of the Higgs boson
with M ~ 125 GeV.

Our analysis shows that, within 2HDM, the reasonably low values of
all Higgs masses are well compatible with large Az, |[A7], Ao, i.e. with
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the strong interaction in the Higgs sector.

To-day I like to see for opportunity that "observable'" (at 30 level now)
in WW, Z2Z, hh production at M~.2 TeV, observed by both CMS and
ATLAS could be signal of such strong interaction.



For first summary

The observables of the basic set are measurable quantities, independent
of each other. The models with arbitrary values of these observable
parameters can in principle be realized. In some special variants of
2HDM, additional relations between these parameters may appear
(for example, in the CP conserving case x4 = xz = 0).

Our results open the door for the study of Higgs models in terms
of measurable quantities alone. It allows to remove from the data
analysis the widely spread intermediate stages with complex, often
model-dependent, analysis of coefficients of Lagrangian.

The principal possibility to determine all parameters of 2HDM from
the (future) data meet strong practical limitations (which can be
hidden in other approaches). In the best case, it looks the problem
for a very long time.
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Renormalization scheme

The standard calculation of the radiative corrections (RC) in the
model is based on the parameters of Lagrangian which are RPa
dependent. This RPa ambiguity can be removed, for example, by using
the renormalization procedure fixing parameters of the basic set. In
the modern approach the calculation of any physical effect should
be supplemented by calculation of renormalized values of masses and
other parameters of basic set which should be taken into account in
the data analysis. For example, in some particular variant of MSSM
the value of triple Higgs coupling with RC looks essentially different
from its tree form in the SM. However, within the same approximation
the using of the renormalized mass M makes the result close to the

SM value.
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